How to use the emmental.metrics.accuracy.accuracy_scorer function in emmental

To help you get started, we’ve selected a few emmental examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github SenWu / emmental / tests / metrics / test_metrics.py View on Github external
assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, PROBS, None)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS, normalize=False)

    assert isequal(metric_dict, {"accuracy": 4})

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2, normalize=False)

    assert isequal(metric_dict, {"accuracy@2": 6})
github SenWu / emmental / tests / metrics / test_metrics.py View on Github external
"""Unit test of accuracy_scorer."""
    caplog.set_level(logging.INFO)

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, PROBS, None)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS, normalize=False)

    assert isequal(metric_dict, {"accuracy": 4})

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2, normalize=False)
github SenWu / emmental / tests / metrics / test_metrics.py View on Github external
def test_accuracy(caplog):
    """Unit test of accuracy_scorer."""
    caplog.set_level(logging.INFO)

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, PROBS, None)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS, normalize=False)

    assert isequal(metric_dict, {"accuracy": 4})

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2)
github SenWu / emmental / tests / metrics / test_metrics.py View on Github external
assert isequal(metric_dict, {"accuracy": 4})

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2, normalize=False)

    assert isequal(metric_dict, {"accuracy@2": 6})
github SenWu / emmental / tests / metrics / test_metrics.py View on Github external
def test_accuracy(caplog):
    """Unit test of accuracy_scorer."""
    caplog.set_level(logging.INFO)

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, PROBS, None)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS, normalize=False)

    assert isequal(metric_dict, {"accuracy": 4})

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS, topk=2)
github SenWu / emmental / tests / metrics / test_metrics.py View on Github external
assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS, normalize=False)

    assert isequal(metric_dict, {"accuracy": 4})

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2, normalize=False)

    assert isequal(metric_dict, {"accuracy@2": 6})
github SenWu / emmental / tests / metrics / test_metrics.py View on Github external
def test_accuracy(caplog):
    """Unit test of accuracy_scorer."""
    caplog.set_level(logging.INFO)

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, PROBS, None)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS, normalize=False)

    assert isequal(metric_dict, {"accuracy": 4})

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, None, PREDS)
github SenWu / emmental / tests / metrics / test_metrics.py View on Github external
assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, PROBS, None)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(GOLDS, None, PREDS, normalize=False)

    assert isequal(metric_dict, {"accuracy": 4})

    metric_dict = accuracy_scorer(GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, None, PREDS)

    assert isequal(metric_dict, {"accuracy": 0.6666666666666666})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2)

    assert isequal(metric_dict, {"accuracy@2": 1.0})

    metric_dict = accuracy_scorer(PROB_GOLDS, PROBS, PREDS, topk=2, normalize=False)

    assert isequal(metric_dict, {"accuracy@2": 6})
github SenWu / emmental / src / emmental / metrics / accuracy_f1.py View on Github external
pos_label: int = 1,
) -> Dict[str, float]:
    """Average of accuracy and f1 score.

    Args:
      golds: Ground truth values.
      probs: Predicted probabilities.
      preds: Predicted values.
      uids: Unique ids, defaults to None.
      pos_label: The positive class label, defaults to 1.

    Returns:
      Average of accuracy and f1.
    """
    metrics = dict()
    accuracy = accuracy_scorer(golds, probs, preds, uids)
    f1 = f1_scorer(golds, probs, preds, uids, pos_label=pos_label)
    metrics["accuracy_f1"] = np.mean([accuracy["accuracy"], f1["f1"]])

    return metrics
github SenWu / emmental / src / emmental / metrics / __init__.py View on Github external
from emmental.metrics.accuracy import accuracy_scorer
from emmental.metrics.accuracy_f1 import accuracy_f1_scorer
from emmental.metrics.fbeta import f1_scorer, fbeta_scorer
from emmental.metrics.matthews_correlation import (
    matthews_correlation_coefficient_scorer,
)
from emmental.metrics.mean_squared_error import mean_squared_error_scorer
from emmental.metrics.pearson_correlation import pearson_correlation_scorer
from emmental.metrics.pearson_spearman import pearson_spearman_scorer
from emmental.metrics.precision import precision_scorer
from emmental.metrics.recall import recall_scorer
from emmental.metrics.roc_auc import roc_auc_scorer
from emmental.metrics.spearman_correlation import spearman_correlation_scorer

METRICS = {
    "accuracy": accuracy_scorer,
    "accuracy_f1": accuracy_f1_scorer,
    "precision": precision_scorer,
    "recall": recall_scorer,
    "f1": f1_scorer,
    "fbeta": fbeta_scorer,
    "matthews_correlation": matthews_correlation_coefficient_scorer,
    "mean_squared_error": mean_squared_error_scorer,
    "pearson_correlation": pearson_correlation_scorer,
    "pearson_spearman": pearson_spearman_scorer,
    "spearman_correlation": spearman_correlation_scorer,
    "roc_auc": roc_auc_scorer,
}

__all__ = [
    "accuracy_scorer",
    "accuracy_f1_scorer",