How to use the elephas.ml.adapter.to_data_frame function in elephas

To help you get started, we’ve selected a few elephas examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github maxpumperla / elephas / tests / test_ml_model.py View on Github external
def test_spark_ml_model(spark_context):

    df = to_data_frame(spark_context, x_train, y_train, categorical=True)
    test_df = to_data_frame(spark_context, x_test, y_test, categorical=True)

    sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    sgd_conf = optimizers.serialize(sgd)

    # Initialize Spark ML Estimator
    estimator = ElephasEstimator()
    estimator.set_keras_model_config(model.to_yaml())
    estimator.set_optimizer_config(sgd_conf)
    estimator.set_mode("synchronous")
    estimator.set_loss("categorical_crossentropy")
    estimator.set_metrics(['acc'])
    estimator.set_epochs(epochs)
    estimator.set_batch_size(batch_size)
    estimator.set_validation_split(0.1)
    estimator.set_categorical_labels(True)
github maxpumperla / elephas / tests / test_ml_model.py View on Github external
def test_spark_ml_model(spark_context):

    df = to_data_frame(spark_context, x_train, y_train, categorical=True)
    test_df = to_data_frame(spark_context, x_test, y_test, categorical=True)

    sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    sgd_conf = optimizers.serialize(sgd)

    # Initialize Spark ML Estimator
    estimator = ElephasEstimator()
    estimator.set_keras_model_config(model.to_yaml())
    estimator.set_optimizer_config(sgd_conf)
    estimator.set_mode("synchronous")
    estimator.set_loss("categorical_crossentropy")
    estimator.set_metrics(['acc'])
    estimator.set_epochs(epochs)
    estimator.set_batch_size(batch_size)
    estimator.set_validation_split(0.1)
    estimator.set_categorical_labels(True)
    estimator.set_nb_classes(nb_classes)
github maxpumperla / elephas / tests / ml / test_adapter.py View on Github external
def test_from_data_frame_cat(spark_context):
    features = np.ones((2, 10))
    labels = np.asarray([[0, 0, 1.0], [0, 1.0, 0]])

    data_frame = adapter.to_data_frame(
        spark_context, features, labels, categorical=True)

    x, y = adapter.from_data_frame(data_frame, categorical=True, nb_classes=3)
    assert features.shape == x.shape
    assert labels.shape == y.shape
github maxpumperla / elephas / tests / ml / test_adapter.py View on Github external
def test_df_to_simple_rdd(spark_context):
    features = np.ones((2, 10))
    labels = np.asarray([[2.0], [1.0]]).reshape((2,))

    data_frame = adapter.to_data_frame(
        spark_context, features, labels, categorical=False)

    rdd = adapter.df_to_simple_rdd(data_frame, False)
    assert rdd.count() == 2
github maxpumperla / elephas / tests / ml / test_adapter.py View on Github external
def test_to_data_frame(spark_context):
    features = np.ones((2, 10))
    labels = np.asarray([[2.0], [1.0]])

    data_frame = adapter.to_data_frame(
        spark_context, features, labels, categorical=False)
    assert data_frame.count() == 2
github maxpumperla / elephas / tests / ml / test_adapter.py View on Github external
def test_from_data_frame(spark_context):
    features = np.ones((2, 10))
    labels = np.asarray([[2.0], [1.0]]).reshape((2,))

    data_frame = adapter.to_data_frame(
        spark_context, features, labels, categorical=False)

    x, y = adapter.from_data_frame(data_frame, categorical=False)
    assert features.shape == x.shape
    assert labels.shape == y.shape
github maxpumperla / elephas / tests / ml / test_adapter.py View on Github external
def test_to_data_frame_cat(spark_context):
    features = np.ones((2, 10))
    labels = np.asarray([[0, 0, 1.0], [0, 1.0, 0]])

    data_frame = adapter.to_data_frame(
        spark_context, features, labels, categorical=True)
    assert data_frame.count() == 2
github maxpumperla / elephas / examples / ml_mlp.py View on Github external
model = Sequential()
model.add(Dense(128, input_dim=784))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

# Create Spark context
conf = SparkConf().setAppName('Mnist_Spark_MLP').setMaster('local[8]')
sc = SparkContext(conf=conf)

# Build RDD from numpy features and labels
df = to_data_frame(sc, x_train, y_train, categorical=True)
test_df = to_data_frame(sc, x_test, y_test, categorical=True)

sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
sgd_conf = optimizers.serialize(sgd)

# Initialize Spark ML Estimator
estimator = ElephasEstimator()
estimator.set_keras_model_config(model.to_yaml())
estimator.set_optimizer_config(sgd_conf)
estimator.set_mode("synchronous")
estimator.set_loss("categorical_crossentropy")
estimator.set_metrics(['acc'])
estimator.set_nb_epoch(nb_epoch)
estimator.set_batch_size(batch_size)
estimator.set_validation_split(0.1)
estimator.set_categorical_labels(True)
github maxpumperla / elephas / examples / ml_mlp.py View on Github external
model.add(Dense(128, input_dim=784))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

# Create Spark context
conf = SparkConf().setAppName('Mnist_Spark_MLP').setMaster('local[8]')
sc = SparkContext(conf=conf)

# Build RDD from numpy features and labels
df = to_data_frame(sc, x_train, y_train, categorical=True)
test_df = to_data_frame(sc, x_test, y_test, categorical=True)

sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
sgd_conf = optimizers.serialize(sgd)

# Initialize Spark ML Estimator
estimator = ElephasEstimator()
estimator.set_keras_model_config(model.to_yaml())
estimator.set_optimizer_config(sgd_conf)
estimator.set_mode("synchronous")
estimator.set_loss("categorical_crossentropy")
estimator.set_metrics(['acc'])
estimator.set_nb_epoch(nb_epoch)
estimator.set_batch_size(batch_size)
estimator.set_validation_split(0.1)
estimator.set_categorical_labels(True)
estimator.set_nb_classes(nb_classes)