Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def inject(injector):
injector.add('mdp', None, Doi('10.3389/neuro.11.008.2008'),
description="Modular toolkit for Data Processing (MDP): a Python data processing framework",
tags=['implementation'])
injector.add('mdp.nodes', 'PCANode.train', Doi('10.1007/b98835'),
description="Principal Component Analysis (and filtering)",
tags=['implementation'])
injector.add('mdp.nodes', 'NIPALSNode.train', BibTeX("""
@incollection{Word1966,
author={Wold, H.},
title={Nonlinear estimation by iterative least squares procedures.},
booktitle={Research Papers in Statistics},
publisher={Wiley}
year={1966},
editor={David, F.},
pages={411--444},
}
"""), description="Principal Component Analysis using the NIPALS algorithm.",
tags=['edu'])
injector.add('mdp.nodes', 'FastICANode.train', Doi('10.1109/72.761722'),
description="Independent Component Analysis using the FastICA algorithm",
tags=['implementation'])
def get_bibtex_rendering(entry):
if isinstance(entry, Doi):
return BibTeX(import_doi(entry.doi))
elif isinstance(entry, BibTeX):
return entry
else:
raise ValueError("Have no clue how to get bibtex out of %s" % entry)
year={1966},
editor={David, F.},
pages={411--444},
}
"""), description="Principal Component Analysis using the NIPALS algorithm.",
tags=['edu'])
injector.add('mdp.nodes', 'FastICANode.train', Doi('10.1109/72.761722'),
description="Independent Component Analysis using the FastICA algorithm",
tags=['implementation'])
injector.add('mdp.nodes', 'CuBICANode.train', Doi('10.1109/TSP.2004.826173'),
description='Independent Component Analysis using the CuBICA algorithm.',
tags=['implementation'])
injector.add('mdp.nodes', 'NIPALSNode.train', BibTeX("""
@conference{ZieheMuller1998,
author={Ziehe, Andreas and Muller, Klaus-Robert},
title={TDSEP an efficient algorithm for blind separation using time structure.},
booktitle={Proc. 8th Int. Conf. Artificial Neural Networks},
year={1998},
editor={Niklasson, L, Boden, M, and Ziemke, T},
publisher={ICANN}
}
"""), description='Independent Component Analysis using the TDSEP algorithm',
tags=['edu'])
injector.add('mdp.nodes', 'JADENode.train', Doi('10.1049/ip-f-2.1993.0054'),
description='Independent Component Analysis using the JADE algorithm',
tags=['implementation'])
injector.add('mdp.nodes', 'JADENode.train', Doi('10.1162/089976699300016863'),
injector.add('mdp.nodes', 'SFANode.train', Doi('10.1162/089976602317318938'),
description='Slow Feature Analysis',
tags=['implementation'])
injector.add('mdp.nodes', 'SFA2Node.train', Doi('10.1162/089976602317318938'),
description='Slow Feature Analysis (via the space of inhomogeneous polynomials)',
tags=['implementation'])
injector.add('mdp.nodes', 'ISFANode.train', Doi('10.1007/978-3-540-30110-3_94'),
description='Independent Slow Feature Analysis',
tags=['implementation'])
injector.add('mdp.nodes', 'XSFANode.train', BibTeX("""
@article{SprekelerZitoWiskott2009,
author={Sprekeler, H., Zito, T., and Wiskott, L.},
title={An Extension of Slow Feature Analysis for Nonlinear Blind Source Separation.},
journal={Journal of Machine Learning Research.},
year={2009},
volume={15},
pages={921--947},
}
"""), description="Non-linear Blind Source Separation using Slow Feature Analysis",
tags=['edu'])
injector.add('mdp.nodes', 'FDANode.train', BibTeX("""
@book{Bishop2011,
author={Bishop, Christopher M.},
title={Neural Networks for Pattern Recognition},
publisher={Oxford University Press, Inc}
def inject(injector):
injector.add('numpy', None, BibTeX("""
@article{van2011numpy,
title={The NumPy array: a structure for efficient numerical computation},
author={Van Der Walt, Stefan and Colbert, S Chris and Varoquaux, Gael},
journal={Computing in Science \& Engineering},
volume={13},
number={2},
pages={22--30},
year={2011},
publisher={AIP Publishing}
}
"""),
tags=['implementation'],
cite_module=True,
description="Scientific tools library")
injector.add('scipy.cluster.hierarchy', None, BibTeX("""
@article{sneath1962numerical,
title={Numerical taxonomy},
author={Sneath, Peter HA and Sokal, Robert R},
journal={Nature},
volume={193},
number={4818},
pages={855--860},
year={1962},
publisher={Nature Publishing Group}
}"""),
description="Hierarchical clustering",
min_version='0.4.3',
tags=['edu'])
injector.add('scipy.cluster.hierarchy', None, BibTeX("""
@article{batagelj1995comparing,
title={Comparing resemblance measures},
author={Batagelj, Vladimir and Bren, Matevz},
journal={Journal of classification},
volume={12},
number={1},
pages={73--90},
year={1995},
publisher={Springer}
}"""),
description="Hierarchical clustering",
min_version='0.4.3',
tags=['edu'])
injector.add('scipy.cluster.hierarchy', None, BibTeX("""
@book{sokal1958statistical,
def inject(injector):
injector.add('scipy', None, BibTeX("""
@Misc{JOP+01,
author = {Eric Jones and Travis Oliphant and Pearu Peterson and others},
title = {{SciPy}: Open source scientific tools for {Python}},
year = {2001--},
url = "http://www.scipy.org/",
note = {[Online; accessed 2015-07-13]}
}"""),
description="Scientific tools library",
tags=['implementation'])
# scipy.cluster.hierarchy general references
# TODO: we should allow to pass a list of entries
injector.add('scipy.cluster.hierarchy', None, BibTeX("""
@article{johnson1967hierarchical,
title={Hierarchical clustering schemes},
author={Johnson, Stephen C},
tags=['implementation'])
injector.add('mdp.nodes', 'XSFANode.train', BibTeX("""
@article{SprekelerZitoWiskott2009,
author={Sprekeler, H., Zito, T., and Wiskott, L.},
title={An Extension of Slow Feature Analysis for Nonlinear Blind Source Separation.},
journal={Journal of Machine Learning Research.},
year={2009},
volume={15},
pages={921--947},
}
"""), description="Non-linear Blind Source Separation using Slow Feature Analysis",
tags=['edu'])
injector.add('mdp.nodes', 'FDANode.train', BibTeX("""
@book{Bishop2011,
author={Bishop, Christopher M.},
title={Neural Networks for Pattern Recognition},
publisher={Oxford University Press, Inc}
year={2011},
pages={105--112},
}
"""), description="(generalized) Fisher Discriminant Analysis",
tags=['edu'])
def get_text_rendering(citation, style='harvard1'):
from .collector import Citation
entry = citation.entry
if isinstance(entry, Doi):
bibtex_rendering = get_bibtex_rendering(entry)
bibtex_citation = copy.copy(citation)
bibtex_citation.set_entry(bibtex_rendering)
return get_text_rendering(bibtex_citation)
elif isinstance(entry, BibTeX):
return format_bibtex(entry, style=style)
elif isinstance(entry, Text):
return entry.format()
elif isinstance(entry, Url):
return "URL: {}".format(entry.format())
else:
return str(entry)