How to use the dpgen.generator.lib.utils.log_iter function in dpgen

To help you get started, we’ve selected a few dpgen examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github deepmodeling / dpgen / dpgen / generator / run.py View on Github external
iter_name=make_iter_name(ii)
        sepline(iter_name,'=')
        for jj in range (numb_task) :
            if ii * max_tasks + jj <= iter_rec[0] * max_tasks + iter_rec[1] :
                continue
            task_name="task %02d"%jj
            sepline("{} {}".format(iter_name, task_name),'-')
            if   jj == 0 :
                log_iter ("make_train", ii, jj)
                make_train (ii, jdata, mdata)
            elif jj == 1 :
                log_iter ("run_train", ii, jj)
                mdata  = decide_train_machine(mdata)
                run_train  (ii, jdata, mdata)
            elif jj == 2 :
                log_iter ("post_train", ii, jj)
                post_train (ii, jdata, mdata)
            elif jj == 3 :
                log_iter ("make_model_devi", ii, jj)
                cont = make_model_devi (ii, jdata, mdata)
                if not cont :
                    break
            elif jj == 4 :
                log_iter ("run_model_devi", ii, jj)
                mdata = decide_model_devi_machine(mdata)
                run_model_devi (ii, jdata, mdata)
                
            elif jj == 5 :
                log_iter ("post_model_devi", ii, jj)
                post_model_devi (ii, jdata, mdata)
            elif jj == 6 :
                log_iter ("make_fp", ii, jj)
github deepmodeling / dpgen / dpgen / generator / run.py View on Github external
if ii * max_tasks + jj <= iter_rec[0] * max_tasks + iter_rec[1] :
                continue
            task_name="task %02d"%jj
            sepline("{} {}".format(iter_name, task_name),'-')
            if   jj == 0 :
                log_iter ("make_train", ii, jj)
                make_train (ii, jdata, mdata)
            elif jj == 1 :
                log_iter ("run_train", ii, jj)
                mdata  = decide_train_machine(mdata)
                run_train  (ii, jdata, mdata)
            elif jj == 2 :
                log_iter ("post_train", ii, jj)
                post_train (ii, jdata, mdata)
            elif jj == 3 :
                log_iter ("make_model_devi", ii, jj)
                cont = make_model_devi (ii, jdata, mdata)
                if not cont :
                    break
            elif jj == 4 :
                log_iter ("run_model_devi", ii, jj)
                mdata = decide_model_devi_machine(mdata)
                run_model_devi (ii, jdata, mdata)
                
            elif jj == 5 :
                log_iter ("post_model_devi", ii, jj)
                post_model_devi (ii, jdata, mdata)
            elif jj == 6 :
                log_iter ("make_fp", ii, jj)
                make_fp (ii, jdata, mdata)
            elif jj == 7 :
                log_iter ("run_fp", ii, jj)
github deepmodeling / dpgen / dpgen / simplify / simplify.py View on Github external
cont = make_model_devi(ii, jdata, mdata)
                if not cont or ii >= jdata.get("stop_iter", ii+1):
                    break
            elif jj == 4:
                log_iter("run_model_devi", ii, jj)
                mdata = decide_model_devi_machine(mdata)
                disp = make_dispatcher(mdata['model_devi_machine'])
                run_model_devi(ii, jdata, mdata, disp)
            elif jj == 5:
                log_iter("post_model_devi", ii, jj)
                post_model_devi(ii, jdata, mdata)
            elif jj == 6:
                log_iter("make_fp", ii, jj)
                make_fp(ii, jdata, mdata)
            elif jj == 7:
                log_iter("run_fp", ii, jj)
                if jdata.get("labeled", False):
                    dlog.info("already have labeled data, skip run_fp")
                else:
                    mdata = decide_fp_machine(mdata)
                    disp = make_dispatcher(mdata['fp_machine'])
                    run_fp(ii, jdata, mdata)
            elif jj == 8:
                log_iter("post_fp", ii, jj)
                if jdata.get("labeled", False):
                    dlog.info("already have labeled data, skip post_fp")
                else:
                    post_fp(ii, jdata)
            else:
                raise RuntimeError("unknown task %d, something wrong" % jj)
            record_iter(record, ii, jj)
github deepmodeling / dpgen / dpgen / simplify / simplify.py View on Github external
jdata['model_devi_jobs'] = [{} for _ in range(ii+1)]
            if ii == 0 and jj < 6:
                if jj == 0:
                    log_iter("init_pick", ii, jj)
                    init_pick(ii, jdata, mdata)
                dlog.info("first iter, skip step 1-5")
            elif jj == 0:
                log_iter("make_train", ii, jj)
                make_train(ii, jdata, mdata)
            elif jj == 1:
                log_iter("run_train", ii, jj)
                mdata = decide_train_machine(mdata)
                disp = make_dispatcher(mdata['train_machine'])
                run_train(ii, jdata, mdata)
            elif jj == 2:
                log_iter("post_train", ii, jj)
                post_train(ii, jdata, mdata)
            elif jj == 3:
                log_iter("make_model_devi", ii, jj)
                cont = make_model_devi(ii, jdata, mdata)
                if not cont or ii >= jdata.get("stop_iter", ii+1):
                    break
            elif jj == 4:
                log_iter("run_model_devi", ii, jj)
                mdata = decide_model_devi_machine(mdata)
                disp = make_dispatcher(mdata['model_devi_machine'])
                run_model_devi(ii, jdata, mdata, disp)
            elif jj == 5:
                log_iter("post_model_devi", ii, jj)
                post_model_devi(ii, jdata, mdata)
            elif jj == 6:
                log_iter("make_fp", ii, jj)
github deepmodeling / dpgen / dpgen / simplify / simplify.py View on Github external
ii += 1
        iter_name = make_iter_name(ii)
        sepline(iter_name, '=')
        for jj in range(numb_task):
            if ii * max_tasks + jj <= iter_rec[0] * max_tasks + iter_rec[1]:
                continue
            task_name = "task %02d" % jj
            sepline("{} {}".format(iter_name, task_name), '-')
            jdata['model_devi_jobs'] = [{} for _ in range(ii+1)]
            if ii == 0 and jj < 6:
                if jj == 0:
                    log_iter("init_pick", ii, jj)
                    init_pick(ii, jdata, mdata)
                dlog.info("first iter, skip step 1-5")
            elif jj == 0:
                log_iter("make_train", ii, jj)
                make_train(ii, jdata, mdata)
            elif jj == 1:
                log_iter("run_train", ii, jj)
                mdata = decide_train_machine(mdata)
                disp = make_dispatcher(mdata['train_machine'])
                run_train(ii, jdata, mdata)
            elif jj == 2:
                log_iter("post_train", ii, jj)
                post_train(ii, jdata, mdata)
            elif jj == 3:
                log_iter("make_model_devi", ii, jj)
                cont = make_model_devi(ii, jdata, mdata)
                if not cont or ii >= jdata.get("stop_iter", ii+1):
                    break
            elif jj == 4:
                log_iter("run_model_devi", ii, jj)
github deepmodeling / dpgen / dpgen / generator / run.py View on Github external
cont = True
    ii = -1
    while cont:
        ii += 1
        iter_name=make_iter_name(ii)
        sepline(iter_name,'=')
        for jj in range (numb_task) :
            if ii * max_tasks + jj <= iter_rec[0] * max_tasks + iter_rec[1] :
                continue
            task_name="task %02d"%jj
            sepline("{} {}".format(iter_name, task_name),'-')
            if   jj == 0 :
                log_iter ("make_train", ii, jj)
                make_train (ii, jdata, mdata)
            elif jj == 1 :
                log_iter ("run_train", ii, jj)
                mdata  = decide_train_machine(mdata)
                run_train  (ii, jdata, mdata)
            elif jj == 2 :
                log_iter ("post_train", ii, jj)
                post_train (ii, jdata, mdata)
            elif jj == 3 :
                log_iter ("make_model_devi", ii, jj)
                cont = make_model_devi (ii, jdata, mdata)
                if not cont :
                    break
            elif jj == 4 :
                log_iter ("run_model_devi", ii, jj)
                mdata = decide_model_devi_machine(mdata)
                run_model_devi (ii, jdata, mdata)
                
            elif jj == 5 :
github deepmodeling / dpgen / dpgen / simplify / simplify.py View on Github external
make_train(ii, jdata, mdata)
            elif jj == 1:
                log_iter("run_train", ii, jj)
                mdata = decide_train_machine(mdata)
                disp = make_dispatcher(mdata['train_machine'])
                run_train(ii, jdata, mdata)
            elif jj == 2:
                log_iter("post_train", ii, jj)
                post_train(ii, jdata, mdata)
            elif jj == 3:
                log_iter("make_model_devi", ii, jj)
                cont = make_model_devi(ii, jdata, mdata)
                if not cont or ii >= jdata.get("stop_iter", ii+1):
                    break
            elif jj == 4:
                log_iter("run_model_devi", ii, jj)
                mdata = decide_model_devi_machine(mdata)
                disp = make_dispatcher(mdata['model_devi_machine'])
                run_model_devi(ii, jdata, mdata, disp)
            elif jj == 5:
                log_iter("post_model_devi", ii, jj)
                post_model_devi(ii, jdata, mdata)
            elif jj == 6:
                log_iter("make_fp", ii, jj)
                make_fp(ii, jdata, mdata)
            elif jj == 7:
                log_iter("run_fp", ii, jj)
                if jdata.get("labeled", False):
                    dlog.info("already have labeled data, skip run_fp")
                else:
                    mdata = decide_fp_machine(mdata)
                    disp = make_dispatcher(mdata['fp_machine'])
github deepmodeling / dpgen / dpgen / generator / run.py View on Github external
log_iter ("make_train", ii, jj)
                make_train (ii, jdata, mdata)
            elif jj == 1 :
                log_iter ("run_train", ii, jj)
                mdata  = decide_train_machine(mdata)
                run_train  (ii, jdata, mdata)
            elif jj == 2 :
                log_iter ("post_train", ii, jj)
                post_train (ii, jdata, mdata)
            elif jj == 3 :
                log_iter ("make_model_devi", ii, jj)
                cont = make_model_devi (ii, jdata, mdata)
                if not cont :
                    break
            elif jj == 4 :
                log_iter ("run_model_devi", ii, jj)
                mdata = decide_model_devi_machine(mdata)
                run_model_devi (ii, jdata, mdata)
                
            elif jj == 5 :
                log_iter ("post_model_devi", ii, jj)
                post_model_devi (ii, jdata, mdata)
            elif jj == 6 :
                log_iter ("make_fp", ii, jj)
                make_fp (ii, jdata, mdata)
            elif jj == 7 :
                log_iter ("run_fp", ii, jj)
                mdata = decide_fp_machine(mdata)
                run_fp (ii, jdata, mdata)
            elif jj == 8 :
                log_iter ("post_fp", ii, jj)
                post_fp (ii, jdata)
github deepmodeling / dpgen / dpgen / simplify / simplify.py View on Github external
log_iter("init_pick", ii, jj)
                    init_pick(ii, jdata, mdata)
                dlog.info("first iter, skip step 1-5")
            elif jj == 0:
                log_iter("make_train", ii, jj)
                make_train(ii, jdata, mdata)
            elif jj == 1:
                log_iter("run_train", ii, jj)
                mdata = decide_train_machine(mdata)
                disp = make_dispatcher(mdata['train_machine'])
                run_train(ii, jdata, mdata)
            elif jj == 2:
                log_iter("post_train", ii, jj)
                post_train(ii, jdata, mdata)
            elif jj == 3:
                log_iter("make_model_devi", ii, jj)
                cont = make_model_devi(ii, jdata, mdata)
                if not cont or ii >= jdata.get("stop_iter", ii+1):
                    break
            elif jj == 4:
                log_iter("run_model_devi", ii, jj)
                mdata = decide_model_devi_machine(mdata)
                disp = make_dispatcher(mdata['model_devi_machine'])
                run_model_devi(ii, jdata, mdata, disp)
            elif jj == 5:
                log_iter("post_model_devi", ii, jj)
                post_model_devi(ii, jdata, mdata)
            elif jj == 6:
                log_iter("make_fp", ii, jj)
                make_fp(ii, jdata, mdata)
            elif jj == 7:
                log_iter("run_fp", ii, jj)