How to use the dowhy.datasets function in dowhy

To help you get started, we’ve selected a few dowhy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github microsoft / dowhy / tests / causal_estimators / base.py View on Github external
def average_treatment_effect_test(self, dataset="linear", beta=10,
            num_common_causes=1, num_instruments=1,
            num_effect_modifiers=0, num_treatments=1,
            num_samples=100000,
            treatment_is_binary=True,
            outcome_is_binary=False,
            method_params=None):
        data = dowhy.datasets.linear_dataset(beta=beta,
                                             num_common_causes=num_common_causes,
                                             num_instruments=num_instruments,
                                             num_effect_modifiers = num_effect_modifiers,
                                             num_treatments = num_treatments,
                                             num_samples=num_samples,
                                             treatment_is_binary=treatment_is_binary,
                                             outcome_is_binary = outcome_is_binary)

        model = CausalModel(
            data=data['df'],
            treatment=data["treatment_name"],
            outcome=data["outcome_name"],
            graph=data["gml_graph"],
            proceed_when_unidentifiable=True,
            test_significance=None
        )
github microsoft / dowhy / tests / causal_refuters / base.py View on Github external
def null_refutation_test(self, data=None, dataset="linear", beta=10,
            num_common_causes=1, num_instruments=1, num_samples=100000,
            treatment_is_binary=True):
        # Supports user-provided dataset object
        if data is None:
            data = dowhy.datasets.linear_dataset(beta=beta,
                                             num_common_causes=num_common_causes,
                                             num_instruments=num_instruments,
                                             num_samples=num_samples,
                                             treatment_is_binary=treatment_is_binary)

        model = CausalModel(
            data=data['df'],
            treatment=data["treatment_name"],
            outcome=data["outcome_name"],
            graph=data["gml_graph"],
            proceed_when_unidentifiable=True,
            test_significance=None
        )
        target_estimand = model.identify_effect()
        ate_estimate = model.estimate_effect(
            identified_estimand=target_estimand,
github microsoft / dowhy / tests / do_sampler / test_pandas_do_api.py View on Github external
def test_pandas_api_continuous_cause_discrete_confounder(self, N, error_tolerance):
        data = dowhy.datasets.linear_dataset(beta=10,
                                             num_common_causes=1,
                                             num_instruments=1,
                                             num_samples=N,
                                             treatment_is_binary=False)
        X0 = np.random.normal(size=N).astype(int)
        v = np.random.normal(size=N) + X0
        y = data['ate'] * v + X0 + np.random.normal()
        data['df']['v'] = v
        data['df']['X0'] = X0
        data['df']['y'] = y
        df = data['df'].copy()

        variable_types = {'v': 'c', 'X0': 'd', 'y': 'c'}
        outcome = 'y'
        cause = 'v'
        common_causes = 'X0'
github microsoft / dowhy / tests / do_sampler / test_pandas_do_api.py View on Github external
def test_pandas_api_discrete_cause_continuous_confounder(self, N, error_tolerance):
        data = dowhy.datasets.linear_dataset(beta=10,
                                             num_common_causes=1,
                                             num_instruments=1,
                                             num_samples=N,
                                             treatment_is_binary=False)
        X0 = np.random.normal(size=N)
        v = (np.random.normal(size=N) + X0).astype(int)
        y = data['ate']*v + X0 + np.random.normal()
        data['df']['v'] = v
        data['df']['X0'] = X0
        data['df']['y'] = y
        df = data['df'].copy()

        variable_types = {'v': 'd', 'X0': 'c', 'y': 'c'}
        outcome = 'y'
        cause = 'v'
        common_causes = 'X0'
github microsoft / dowhy / tests / test_causal_model.py View on Github external
def test_graph_input(self, beta, num_instruments, num_samples, num_treatments):
        num_common_causes = 5
        data = dowhy.datasets.linear_dataset(beta=beta,
                                             num_common_causes=num_common_causes,
                                             num_instruments=num_instruments,
                                             num_samples=num_samples,
                                             num_treatments = num_treatments,
                                             treatment_is_binary=True)

        model = CausalModel(
            data=data['df'],
            treatment=data["treatment_name"],
            outcome=data["outcome_name"],
            graph=data["gml_graph"],
            proceed_when_unidentifiable=True,
            test_significance=None
        )
        # removing two common causes
        gml_str = 'graph[directed 1 node[ id "{0}" label "{0}"]node[ id "{1}" label "{1}"]node[ id "Unobserved Confounders" label "Unobserved Confounders"]edge[source "{0}" target "{1}"]edge[source "Unobserved Confounders" target "{0}"]edge[source "Unobserved Confounders" target "{1}"]node[ id "X0" label "X0"] edge[ source "X0" target "{0}"] node[ id "X1" label "X1"] edge[ source "X1" target "{0}"] node[ id "X2" label "X2"] edge[ source "X2" target "{0}"] edge[ source "X0" target "{1}"] edge[ source "X1" target "{1}"] edge[ source "X2" target "{1}"] node[ id "Z0" label "Z0"] edge[ source "Z0" target "{0}"]]'.format(data["treatment_name"][0], data["outcome_name"])