How to use the diffusion.Diffusion function in diffusion

To help you get started, we’ve selected a few diffusion examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github fyang93 / diffusion / rank.py View on Github external
def search():
    n_query = len(queries)
    diffusion = Diffusion(np.vstack([queries, gallery]), args.cache_dir)
    offline = diffusion.get_offline_results(args.truncation_size, args.kd)
    features = preprocessing.normalize(offline, norm="l2", axis=1)
    scores = features[:n_query] @ features[n_query:].T
    ranks = np.argsort(-scores.todense())
    evaluate(ranks)
github fyang93 / diffusion / rank.py View on Github external
def search_old(gamma=3):
    diffusion = Diffusion(gallery, args.cache_dir)
    offline = diffusion.get_offline_results(args.truncation_size, args.kd)

    time0 = time.time()
    print('[search] 1) k-NN search')
    sims, ids = diffusion.knn.search(queries, args.kq)
    sims = sims ** gamma
    qr_num = ids.shape[0]

    print('[search] 2) linear combination')
    all_scores = np.empty((qr_num, args.truncation_size), dtype=np.float32)
    all_ranks = np.empty((qr_num, args.truncation_size), dtype=np.int)
    for i in tqdm(range(qr_num), desc='[search] query'):
        scores = sims[i] @ offline[ids[i]]
        parts = np.argpartition(-scores, args.truncation_size)[:args.truncation_size]
        ranks = np.argsort(-scores[parts])
        all_scores[i] = scores[parts][ranks]

diffusion

Python SDK for Diffusion.

MIT
Latest version published 9 days ago

Package Health Score

81 / 100
Full package analysis