How to use the deeplabcut.utils.auxiliaryfunctions function in deeplabcut

To help you get started, we’ve selected a few deeplabcut examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github AlexEMG / DeepLabCut / deeplabcut / generate_training_dataset / frame_extraction_toolbox.py View on Github external
# Hiding these widgets and show them once the video is loaded
        self.start_frames_sizer.ShowItems(show=False)
        self.end_frames_sizer.ShowItems(show=False)

        self.widget_panel.SetSizer(widgetsizer)
        self.widget_panel.SetSizerAndFit(widgetsizer)
        self.widget_panel.Layout()
        
# Variables initialization
        self.numberFrames = 0
        self.currFrame = 0
        self.figure = Figure()
        self.axes = self.figure.add_subplot(111)
        self.drs = []
        self.cfg = auxiliaryfunctions.read_config(config)
        self.Task = self.cfg['Task']
        self.start = self.cfg['start']
        self.stop = self.cfg['stop']
        self.date = self.cfg['date']
        self.trainFraction = self.cfg['TrainingFraction']
        self.trainFraction = self.trainFraction[0]
        self.videos = self.cfg['video_sets'].keys()
        self.bodyparts = self.cfg['bodyparts']
        self.colormap = plt.get_cmap(self.cfg['colormap'])
        self.colormap = self.colormap.reversed()
        self.markerSize = self.cfg['dotsize']
        self.alpha = self.cfg['alphavalue']
        self.video_names = [Path(i).stem for i in self.videos]
        self.config_path = Path(config)
        self.extract_range_frame = False
        self.extract_from_analyse_video = False
github AlexEMG / DeepLabCut / deeplabcut / pose_estimation_tensorflow / predict_videos.py View on Github external
"Scorer": DLCscorer,
            "DLC-model-config file": dlc_cfg,
            "fps": fps,
            "batch_size": dlc_cfg["batch_size"],
            "frame_dimensions": (ny, nx),
            "nframes": nframes,
            "iteration (active-learning)": cfg["iteration"],
            "training set fraction": trainFraction,
            "cropping": cfg['cropping'],
            "cropping_parameters": coords
            #"gpu_info": device_lib.list_local_devices()
        }
        metadata = {'data': dictionary}

        print("Saving results in %s..." %(Path(video).parents[0]))
        auxiliaryfunctions.SaveData(PredictedData[:nframes,:], metadata, dataname, pdindex, range(nframes),save_as_csv)
        return DLCscorer
    else:
        return DLCscorer
github AlexEMG / DeepLabCut / deeplabcut / utils / conversioncode.py View on Github external
If true the user will be asked specifically for each folder in labeled-data if the containing csv shall be converted to hdf format.

    scorer: string, optional
        If a string is given, then the scorer/annotator in all csv and hdf files that are changed, will be overwritten with this name.

    Examples
    --------
    Convert csv annotation files for reaching-task project into hdf.
    >>> deeplabcut.convertcsv2h5('/analysis/project/reaching-task/config.yaml')

    --------
    Convert csv annotation files for reaching-task project into hdf while changing the scorer/annotator in all annotation files to Albert!
    >>> deeplabcut.convertcsv2h5('/analysis/project/reaching-task/config.yaml',scorer='Albert')
    --------
    """
    cfg = auxiliaryfunctions.read_config(config)
    videos = cfg['video_sets'].keys()
    video_names = [Path(i).stem for i in videos]
    folders = [Path(config).parent / 'labeled-data' /Path(i) for i in video_names]
    if scorer==None:
        scorer=cfg['scorer']

    for folder in folders:
        try:
            if userfeedback==True:
                print("Do you want to convert the csv file in folder:", folder, "?")
                askuser = input("yes/no")
            else:
                askuser="yes"

            if askuser=='y' or askuser=='yes' or askuser=='Ja' or askuser=='ha': # multilanguage support :)
                fn=os.path.join(str(folder),'CollectedData_' + cfg['scorer'] + '.csv')
github AlexEMG / DeepLabCut / deeplabcut / generate_training_dataset / trainingsetmanipulation.py View on Github external
def comparevideolistsanddatafolders(config):
    """
    Auxiliary function that compares the folders in labeled-data and the ones listed under video_sets (in the config file).

    Parameter
    ----------
    config : string
        String containing the full path of the config file in the project.

    """
    cfg = auxiliaryfunctions.read_config(config)
    videos = cfg['video_sets'].keys()
    video_names = [Path(i).stem for i in videos]
    alldatafolders = [fn for fn in os.listdir(Path(config).parent / 'labeled-data') if '_labeled' not in fn]

    print("Config file contains:", len(video_names))
    print("Labeled-data contains:", len(alldatafolders))

    for vn in video_names:
        if vn in alldatafolders:
            pass
        else:
            print(vn, " is missing as a folder!")

    for vn in alldatafolders:
        if vn in video_names:
            pass
github AlexEMG / DeepLabCut / deeplabcut / post_processing / filtering.py View on Github external
Arima model:
    deeplabcut.filterpredictions('C:\\myproject\\reaching-task\\config.yaml',['C:\\myproject\\trailtracking-task\\test.mp4'],shuffle=3,filterype='arima',ARdegree=5,MAdegree=2)

    Use median filter over 10bins:
    deeplabcut.filterpredictions('C:\\myproject\\reaching-task\\config.yaml',['C:\\myproject\\trailtracking-task\\test.mp4'],shuffle=3,windowlength=10)

    One can then use the filtered rather than the frame-by-frame predictions by calling:

    deeplabcut.plot_trajectories('C:\\myproject\\reaching-task\\config.yaml',['C:\\myproject\\trailtracking-task\\test.mp4'],shuffle=3,filtered=True)

    deeplabcut.create_labeled_video('C:\\myproject\\reaching-task\\config.yaml',['C:\\myproject\\trailtracking-task\\test.mp4'],shuffle=3,filtered=True)
    --------

    Returns filtered pandas array with the same structure as normal output of network.
    """
    cfg = auxiliaryfunctions.read_config(config)
    DLCscorer,DLCscorerlegacy=auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction = cfg['TrainingFraction'][trainingsetindex])
    Videos=auxiliaryfunctions.Getlistofvideos(video,videotype)

    if len(Videos)>0:
        for video in Videos:
            if destfolder is None:
                destfolder = str(Path(video).parents[0])

            print("Filtering with %s model %s"%(filtertype,video))
            videofolder = destfolder
            vname=Path(video).stem
            notanalyzed,outdataname,sourcedataname,scorer=auxiliaryfunctions.CheckifPostProcessing(destfolder,vname,DLCscorer,DLCscorerlegacy,suffix='filtered')
            if notanalyzed:
                    Dataframe = pd.read_hdf(sourcedataname,'df_with_missing')
                    for bpindex,bp in tqdm(enumerate(cfg['bodyparts'])):
                        pdindex = pd.MultiIndex.from_product([[scorer], [bp], ['x', 'y','likelihood']],names=['scorer', 'bodyparts', 'coords'])
github AlexEMG / DeepLabCut / deeplabcut / pose_estimation_3d / triangulation.py View on Github external
def undistort_points(config,dataframe,camera_pair,destfolder):
    cfg_3d = auxiliaryfunctions.read_config(config)
    img_path,path_corners,path_camera_matrix,path_undistort=auxiliaryfunctions_3d.Foldernames3Dproject(cfg_3d)
    '''
    path_undistort = destfolder
    filename_cam1 = Path(dataframe[0]).stem
    filename_cam2 = Path(dataframe[1]).stem

    #currently no interm. saving of this due to high speed.
    # check if the undistorted files are already present
    if os.path.exists(os.path.join(path_undistort,filename_cam1 + '_undistort.h5')) and os.path.exists(os.path.join(path_undistort,filename_cam2 + '_undistort.h5')):
        print("The undistorted files are already present at %s" % os.path.join(path_undistort,filename_cam1))
        dataFrame_cam1_undistort = pd.read_hdf(os.path.join(path_undistort,filename_cam1 + '_undistort.h5'))
        dataFrame_cam2_undistort = pd.read_hdf(os.path.join(path_undistort,filename_cam2 + '_undistort.h5'))
    else:
    '''
    if True:
        # Create an empty dataFrame to store the undistorted 2d coordinates and likelihood