How to use the deepctr.layers.core.PredictionLayer function in deepctr

To help you get started, we’ve selected a few deepctr examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github shenweichen / DeepCTR / deepctr / models / wdl.py View on Github external
sparse_embedding_list, dense_value_list = input_from_feature_columns(features, dnn_feature_columns,
                                                                         l2_reg_embedding, init_std, seed)

    linear_logit = get_linear_logit(features, linear_feature_columns, init_std=init_std, seed=seed, prefix='linear',
                                    l2_reg=l2_reg_linear)

    dnn_input = combined_dnn_input(sparse_embedding_list, dense_value_list)
    dnn_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
                  False, seed)(dnn_input)
    dnn_logit = Dense(
        1, use_bias=False, activation=None)(dnn_out)

    final_logit = add_func([dnn_logit, linear_logit])

    output = PredictionLayer(task)(final_logit)

    model = Model(inputs=inputs_list, outputs=output)
    return model
github shenweichen / DeepCTR / deepctr / models / mlr.py View on Github external
def get_learner_score(features,feature_columns, region_number, l2_reg, init_std, seed,prefix='learner_',seq_mask_zero=True,task='binary'):
    region_score = [PredictionLayer(task=task,use_bias=False)(
        get_linear_logit(features, feature_columns, init_std=init_std, seed=seed + i, prefix=prefix + str(i + 1),
                         l2_reg=l2_reg)) for i in
                    range(region_number)]

    return concat_func(region_score)
github shenweichen / DeepCTR / deepctr / models / nfm.py View on Github external
linear_logit = get_linear_logit(features, linear_feature_columns, init_std=init_std, seed=seed, prefix='linear',
                                    l2_reg=l2_reg_linear)

    fm_input = concat_func(sparse_embedding_list, axis=1)
    bi_out = BiInteractionPooling()(fm_input)
    if bi_dropout:
        bi_out = tf.keras.layers.Dropout(bi_dropout)(bi_out, training=None)
    dnn_input = combined_dnn_input([bi_out], dense_value_list)
    dnn_output = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
                     False, seed)(dnn_input)
    dnn_logit = tf.keras.layers.Dense(
        1, use_bias=False, activation=None)(dnn_output)

    final_logit = add_func([linear_logit, dnn_logit])

    output = PredictionLayer(task)(final_logit)

    model = tf.keras.models.Model(inputs=inputs_list, outputs=output)
    return model
github shenweichen / DeepCTR / deepctr / models / fnn.py View on Github external
inputs_list = list(features.values())

    sparse_embedding_list, dense_value_list = input_from_feature_columns(features, dnn_feature_columns,
                                                                         l2_reg_embedding, init_std, seed)

    linear_logit = get_linear_logit(features, linear_feature_columns, init_std=init_std, seed=seed, prefix='linear',
                                    l2_reg=l2_reg_linear)

    dnn_input = combined_dnn_input(sparse_embedding_list, dense_value_list)
    deep_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn,
                   dnn_dropout, False, seed)(dnn_input)
    dnn_logit = tf.keras.layers.Dense(
        1, use_bias=False, activation=None)(deep_out)
    final_logit = add_func([dnn_logit, linear_logit])

    output = PredictionLayer(task)(final_logit)

    model = tf.keras.models.Model(inputs=inputs_list,
                                  outputs=output)
    return model
github shenweichen / DeepCTR / deepctr / models / afm.py View on Github external
group_embedding_dict, _ = input_from_feature_columns(features, dnn_feature_columns, l2_reg_embedding, init_std,
                                                         seed, support_dense=False, support_group=True)

    linear_logit = get_linear_logit(features, linear_feature_columns, init_std=init_std, seed=seed, prefix='linear',
                                    l2_reg=l2_reg_linear)

    if use_attention:
        fm_logit = add_func([AFMLayer(attention_factor, l2_reg_att, afm_dropout,
                                      seed)(list(v)) for k, v in group_embedding_dict.items() if k in fm_group])
    else:
        fm_logit = add_func([FM()(concat_func(v, axis=1))
                             for k, v in group_embedding_dict.items() if k in fm_group])

    final_logit = add_func([linear_logit, fm_logit])
    output = PredictionLayer(task)(final_logit)

    model = tf.keras.models.Model(inputs=inputs_list, outputs=output)
    return model
github shenweichen / DeepCTR / deepctr / models / pnn.py View on Github external
elif use_inner:
        deep_input = tf.keras.layers.Concatenate()(
            [linear_signal, inner_product])
    elif use_outter:
        deep_input = tf.keras.layers.Concatenate()(
            [linear_signal, outter_product])
    else:
        deep_input = linear_signal

    dnn_input = combined_dnn_input([deep_input], dense_value_list)
    dnn_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
                  False, seed)(dnn_input)
    dnn_logit = tf.keras.layers.Dense(
        1, use_bias=False, activation=None)(dnn_out)

    output = PredictionLayer(task)(dnn_logit)

    model = tf.keras.models.Model(inputs=inputs_list,
                                  outputs=output)
    return model
github shenweichen / DeepCTR / deepctr / models / xdeepfm.py View on Github external
dnn_input = combined_dnn_input(sparse_embedding_list, dense_value_list)
    dnn_output = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
                     dnn_use_bn, seed)(dnn_input)
    dnn_logit = tf.keras.layers.Dense(
        1, use_bias=False, activation=None)(dnn_output)

    final_logit = add_func([linear_logit, dnn_logit])

    if len(cin_layer_size) > 0:
        exFM_out = CIN(cin_layer_size, cin_activation,
                       cin_split_half, l2_reg_cin, seed)(fm_input)
        exFM_logit = tf.keras.layers.Dense(1, activation=None, )(exFM_out)
        final_logit = add_func([final_logit, exFM_logit])

    output = PredictionLayer(task)(final_logit)

    model = tf.keras.models.Model(inputs=inputs_list, outputs=output)
    return model
github shenweichen / DeepCTR / deepctr / models / dien.py View on Github external
neg_concat_behavior = None
    hist, aux_loss_1 = interest_evolution(keys_emb, query_emb, user_behavior_length, gru_type=gru_type,
                                          use_neg=use_negsampling, neg_concat_behavior=neg_concat_behavior,
                                          att_hidden_size=att_hidden_units,
                                          att_activation=att_activation,
                                          att_weight_normalization=att_weight_normalization, )

    deep_input_emb = Concatenate()([deep_input_emb, hist])

    deep_input_emb = tf.keras.layers.Flatten()(deep_input_emb)

    dnn_input = combined_dnn_input([deep_input_emb], dense_value_list)
    output = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn,
                 dnn_dropout, use_bn, seed)(dnn_input)
    final_logit = Dense(1, use_bias=False)(output)
    output = PredictionLayer(task)(final_logit)

    #model_input_list = get_inputs_list(
    #    [sparse_input, dense_input, user_behavior_input])
    model_input_list = inputs_list

    #if use_negsampling:
    #    model_input_list += list(neg_user_behavior_input.values())

    model_input_list += [user_behavior_length]

    model = tf.keras.models.Model(inputs=model_input_list, outputs=output)

    if use_negsampling:
        model.add_loss(alpha * aux_loss_1)
    try:
        tf.keras.backend.get_session().run(tf.global_variables_initializer())
github shenweichen / DeepCTR / deepctr / models / ccpm.py View on Github external
width = conv_kernel_width[i - 1]
        k = max(1, int((1 - pow(i / l, l - i)) * n)) if i < l else 3

        conv_result = tf.keras.layers.Conv2D(filters=filters, kernel_size=(width, 1), strides=(1, 1), padding='same',
                                             activation='tanh', use_bias=True, )(pooling_result)
        pooling_result = KMaxPooling(
            k=min(k, int(conv_result.shape[1])), axis=1)(conv_result)

    flatten_result = tf.keras.layers.Flatten()(pooling_result)
    dnn_out = DNN(dnn_hidden_units, l2_reg=l2_reg_dnn,
                  dropout_rate=dnn_dropout)(flatten_result)
    dnn_logit = tf.keras.layers.Dense(1, use_bias=False)(dnn_out)

    final_logit = add_func([dnn_logit, linear_logit])

    output = PredictionLayer(task)(final_logit)
    model = tf.keras.models.Model(inputs=inputs_list, outputs=output)
    return model
github shenweichen / DSIN / code / models / dsin.py View on Github external
lstm_outputs = BiLSTM(len(sess_feature_list) * embedding_size,
                          layers=2, res_layers=0, dropout_rate=0.2, )(sess_fea)
    lstm_attention_layer = AttentionSequencePoolingLayer(att_hidden_units=(64, 16), weight_normalization=True)(
        [query_emb, lstm_outputs, user_sess_length])

    deep_input_emb = Concatenate()(
        [deep_input_emb, Flatten()(interest_attention_layer), Flatten()(lstm_attention_layer)])
    if len(dense_input) > 0:
        deep_input_emb = Concatenate()(
            [deep_input_emb] + list(dense_input.values()))

    output = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn,
                 dnn_dropout, dnn_use_bn, seed)(deep_input_emb)
    output = Dense(1, use_bias=False, activation=None)(output)
    output = PredictionLayer(task)(output)

    sess_input_list = []
    # sess_input_length_list = []
    for i in range(sess_max_count):
        sess_name = "sess_" + str(i)
        sess_input_list.extend(get_inputs_list(
            [user_behavior_input_dict[sess_name]]))
        # sess_input_length_list.append(user_behavior_length_dict[sess_name])

    model_input_list = get_inputs_list([sparse_input, dense_input]) + sess_input_list + [
        user_sess_length]

    model = Model(inputs=model_input_list, outputs=output)

    return model