Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_median_reduction_over_latlong_old_version(mock_api):
# Test median reduction over lat/long - old version for backwards compatibility
a = AnalyticsEngine(api=mock_api)
e = ExecutionEngine(api=mock_api)
# Lake Burley Griffin
dimensions = {'x': {'range': (149.07, 149.18)},
'y': {'range': (-35.32, -35.28)},
'time': {'range': (datetime(1990, 1, 1), datetime(1990, 12, 31))}}
arrays = a.create_array(('LANDSAT_5', 'NBAR'), ['band_40'], dimensions, 'get_data')
median_xy = a.apply_generic_reduction(arrays, ['x', 'y'], 'median(array1)', 'medianXY')
result = e.execute_plan(a.plan)
def test_old_version_median_reduction_over_time(mock_api):
# Test median reduction over time - old version for backwards compatibility
a = AnalyticsEngine(api=mock_api)
e = ExecutionEngine(api=mock_api)
# Lake Burley Griffin
dimensions = {'longitude': {'range': (149.07, 149.18)},
'latitude': {'range': (-35.32, -35.28)},
'time': {'range': (datetime(1990, 1, 1), datetime(1990, 12, 31))}}
arrays = a.create_array(('LANDSAT_5', 'NBAR'), ['band_40'], dimensions, 'get_data')
median_t = a.apply_generic_reduction(arrays, ['time'], 'median(array1)', 'medianT')
result = e.execute_plan(a.plan)
def test_bit_of_everything(mock_api):
# Test bit of everything
a = AnalyticsEngine(api=mock_api)
e = ExecutionEngine(api=mock_api)
# Lake Burley Griffin
dimensions = {'longitude': {'range': (149.07, 149.18)},
'latitude': {'range': (-35.32, -35.28)},
'time': {'range': (datetime(1990, 1, 1), datetime(1990, 12, 31))}}
b40 = a.create_array(('LANDSAT_5', 'NBAR'), ['band_40'], dimensions, 'b40')
b30 = a.create_array(('LANDSAT_5', 'NBAR'), ['band_30'], dimensions, 'b30')
pq = a.create_array(('LANDSAT_5', 'PQ'), ['band_pixelquality'], dimensions, 'pq')
ndvi = a.apply_expression([b40, b30], '((array1 - array2) / (array1 + array2))', 'ndvi')
adjusted_ndvi = a.apply_expression(ndvi, '(ndvi*0.5)', 'adjusted_ndvi')
mask = a.apply_expression([adjusted_ndvi, pq], 'array1{array2}', 'mask')
median_t = a.apply_expression(mask, 'median(array1, 0)', 'medianT')
def main():
a = AnalyticsEngine()
e = ExecutionEngine()
# Lake Burley Griffin
dimensions = {'x': {'range': (149.07, 149.18)},
'y': {'range': (-35.32, -35.28)},
'time': {'range': (datetime(1990, 1, 1), datetime(1990, 12, 31))}}
b40 = a.create_array(('LANDSAT_5', 'nbar'), ['nir'], dimensions, 'b40')
b30 = a.create_array(('LANDSAT_5', 'nbar'), ['red'], dimensions, 'b30')
pq = a.create_array(('LANDSAT_5', 'pqa'), ['pixelquality'], dimensions, 'pq')
ndvi = a.apply_expression([b40, b30], '((array1 - array2) / (array1 + array2))', 'ndvi')
mask = a.apply_expression([ndvi, pq], 'array1{(array2 == 32767) | (array2 == 16383) | (array2 == 2457)}', 'mask')
median_t = a.apply_expression(mask, 'median(array1, 0)', 'medianT')
result = e.execute_plan(a.plan)
def main():
a = AnalyticsEngine()
e = ExecutionEngine()
# Lake Burley Griffin
dimensions = {'x': {'range': (149.07, 149.18)},
'y': {'range': (-35.32, -35.28)},
'time': {'range': (datetime(1990, 1, 1), datetime(1990, 12, 31))}}
arrays = a.create_array(('LANDSAT_5', 'nbar'), ['nir'], dimensions, 'get_data')
median_xy = a.apply_generic_reduction(arrays, ['y', 'x'], 'median(array1)', 'medianXY')
result = e.execute_plan(a.plan)
plot(e.cache['medianXY'])
def main():
a = AnalyticsEngine()
e = ExecutionEngine()
# Lake Burley Griffin
dimensions = {'x': {'range': (149.07, 149.18)},
'y': {'range': (-35.32, -35.28)},
'time': {'range': (datetime(1990, 1, 1), datetime(1990, 12, 31))}}
arrays = a.create_array(('LANDSAT_5', 'nbar'), ['nir', 'red'], dimensions, 'get_data')
e.execute_plan(a.plan)
plot(e.cache['get_data'])
b30_result = e.cache['get_data']['array_result']['red']
b40_result = e.cache['get_data']['array_result']['nir']
def main():
a = AnalyticsEngine()
e = ExecutionEngine()
# Lake Burley Griffin
dimensions = {'x': {'range': (149.07, 149.18)},
'y': {'range': (-35.32, -35.28)},
'time': {'range': (datetime(1990, 1, 1), datetime(1990, 12, 31))}}
arrays = a.create_array(('LANDSAT_5', 'nbar'), ['nir'], dimensions, 'get_data')
median = a.apply_expression(arrays, 'median(array1, 1, 2)', 'medianXY')
e.execute_plan(a.plan)
plot(e.cache['medianXY'])
def main():
a = AnalyticsEngine()
e = ExecutionEngine()
# Lake Burley Griffin
dimensions = {'x': {'range': (149.07, 149.18)},
'y': {'range': (-35.32, -35.28)},
'time': {'range': (datetime(1990, 1, 1), datetime(1990, 12, 31))}}
arrays = a.create_array(('LANDSAT_5', 'nbar'), ['nir', 'red'], dimensions, 'get_data')
ndvi = a.apply_bandmath(arrays, '((array1 - array2) / (array1 + array2))', 'ndvi')
e.execute_plan(a.plan)
plot(e.cache['ndvi'])
b30_result = e.cache['get_data']['array_result']['red']
def main():
a = AnalyticsEngine()
e = ExecutionEngine()
# Lake Burley Griffin
dimensions = {'x': {'range': (149.07, 149.18)},
'y': {'range': (-35.32, -35.28)},
'time': {'range': (datetime(1990, 1, 1), datetime(1990, 12, 31))}}
arrays = a.create_array(('LANDSAT_5', 'nbar'), ['nir'], dimensions, 'get_data')
median = a.apply_expression(arrays, 'median(array1, 0)', 'medianT')
e.execute_plan(a.plan)
plot(e.cache['medianT'])
b40_result = e.cache['get_data']['array_result']['nir']