How to use continuum - 10 common examples

To help you get started, we’ve selected a few continuum examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github TLESORT / Continual_Learning_Data_Former / tests / test_Dataloader.py View on Github external
def test_DataLoader_init(get_fake_dataset):
    fake_dataset = get_fake_dataset
    dataset = ContinuumSetLoader(fake_dataset)

    if not dataset.current_task == 0:
        raise AssertionError("Test fail")
github TLESORT / Continual_Learning_Data_Former / tests / test_disjoint.py View on Github external
def test_disjoint_vanilla_test(dataset, n_tasks):
    # no need to download the dataset again for this test (if it already exists)
    input_folder = os.path.join(dir_data, 'Data')
    Disjoint(path=input_folder, dataset=dataset, tasks_number=n_tasks, download=False, train=False)
    check_task_sequences_files(scenario="Disjoint", folder=dir_data, n_tasks=n_tasks, dataset=dataset, train=False)
github TLESORT / Continual_Learning_Data_Former / tests / test_Dataloader.py View on Github external
def test_DataLoader_init_label_size(get_fake_dataset):
    """
    Test if the dictionnary of label have the good size
    :param get_fake_dataset:
    :return:
    """
    fake_dataset = get_fake_dataset
    dataset = ContinuumSetLoader(fake_dataset)

    if not len(dataset.labels) == dataset_size:
        raise AssertionError("Test fail")
github TLESORT / Continual_Learning_Data_Former / tests / test_Dataloader.py View on Github external
def test_DataLoader_with_torch(get_fake_dataset):
    """
    Test if the dataloader can be used with torch.utils.data.DataLoader
    :param get_fake_dataset:
    :return:
    """
    fake_dataset = get_fake_dataset
    dataset = ContinuumSetLoader(fake_dataset)
    train_loader = data.DataLoader(dataset, batch_size=10, shuffle=True, num_workers=6)

    for _, (_, _) in enumerate(train_loader):
        break
github TLESORT / Continual_Learning_Data_Former / tests / test_Dataloader.py View on Github external
def test_DataLoader_with_torch_loader(get_fake_dataset):
    """
    Test if the dataloader with torch.utils.data.DataLoader provide data of good type
    :param get_fake_dataset:
    :return:
    """
    fake_dataset = get_fake_dataset
    dataset = ContinuumSetLoader(fake_dataset)
    train_loader = data.DataLoader(dataset, batch_size=10, shuffle=True, num_workers=6)

    for _, (batch, label) in enumerate(train_loader):

        if not isinstance(label, torch.LongTensor):
            raise AssertionError("Test fail")

        if not isinstance(batch, torch.FloatTensor):
            raise AssertionError("Test fail")
        break
github TLESORT / Continual_Learning_Data_Former / tests / test_Dataloader.py View on Github external
def test_DataLoader_init_label_is_dict(get_fake_dataset):
    """
    Test if the dictionnary of label is really a dictionnary
    :param get_fake_dataset:
    :return:
    """
    fake_dataset = get_fake_dataset
    dataset = ContinuumSetLoader(fake_dataset)

    if not isinstance(dataset.labels, dict):
        raise AssertionError("Test fail")
github TLESORT / Continual_Learning_Data_Former / tests / test_disjoint.py View on Github external
def test_download(tmpdir, dataset):
    continuum = Disjoint(path=tmpdir, dataset=dataset, tasks_number=1, download=False, train=True)

    if continuum is None:
        raise AssertionError("Object construction has failed")
github TLESORT / Continual_Learning_Data_Former / tests / test_disjoint.py View on Github external
def test_disjoint_vanilla_train(dataset, n_tasks):
    # no need to download the dataset again for this test (if it already exists)
    input_folder = os.path.join(dir_data, 'Data')
    Disjoint(path=input_folder, dataset=dataset, tasks_number=n_tasks, download=False, train=True)
    check_task_sequences_files(scenario="Disjoint", folder=dir_data, n_tasks=n_tasks, dataset=dataset, train=True)
github TLESORT / Continual_Learning_Data_Former / tests / test_fellowship.py View on Github external
def test_mnist_fellowship():
    # no need to download the dataset again for this test (if it already exists)
    input_folder = os.path.join(dir_data, 'Data')
    MnistFellowship(path=input_folder, merge=False, download=False, train=True)
    check_task_sequences_files(scenario="mnist_fellowship",
                               folder=dir_data,
                               n_tasks=3,
                               dataset="mnist_fellowship",
                               train=True)
github TLESORT / Continual_Learning_Data_Former / tests / test_fellowship.py View on Github external
def test_mnist_fellowship_merge():
    # no need to download the dataset again for this test (if it already exists)
    input_folder = os.path.join(dir_data, 'Data')
    MnistFellowship(path=input_folder, merge=True, download=False, train=True)
    check_task_sequences_files(scenario="mnist_fellowship_merge",
                               folder=dir_data,
                               n_tasks=3,
                               dataset="mnist_fellowship",
                               train=True)