Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
context = f.readlines()
print("class number: ", len(context))
label = np.zeros((num_node, len(context)))
for i, line in enumerate(context):
line = map(int, line.strip().split("\t"))
for node in line:
label[node, i] = 1
y = torch.from_numpy(label).to(torch.float)
data = Data(x=None, edge_index=edge_index, y=y)
return data
class EdgelistLabel(Dataset):
r"""networks from the https://github.com/THUDM/ProNE/raw/master/data
Args:
root (string): Root directory where the dataset should be saved.
name (string): The name of the dataset (:obj:`"Wikipedia"`).
"""
url = "https://github.com/THUDM/ProNE/raw/master/data"
def __init__(self, root, name):
self.name = name
super(EdgelistLabel, self).__init__(root)
self.data = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
for line in f:
items = line.strip().split()
if items[0] not in test_data:
test_data[items[0]] = [[], []]
test_data[items[0]][1 - int(items[3])].append(
[int(items[1]), int(items[2])]
)
data = Data()
data.train_data = train_data
data.valid_data = valid_data
data.test_data = test_data
return data
class GatneDataset(Dataset):
r"""The network datasets "Amazon", "Twitter" and "YouTube" from the
`"Representation Learning for Attributed Multiplex Heterogeneous Network"
`_ paper.
Args:
root (string): Root directory where the dataset should be saved.
name (string): The name of the dataset (:obj:`"Amazon"`,
:obj:`"Twitter"`, :obj:`"YouTube"`).
"""
url = "https://github.com/THUDM/GATNE/raw/master/data"
def __init__(self, root, name):
self.name = name
super(GatneDataset, self).__init__(root)
self.data = torch.load(self.processed_paths[0])
from itertools import repeat, product
import torch
from cogdl.data import Dataset, Data
class InMemoryDataset(Dataset):
r"""Dataset base class for creating graph datasets which fit completely
into memory.
See `here `__ for the accompanying
tutorial.
Args:
root (string): Root directory where the dataset should be saved.
transform (callable, optional): A function/transform that takes in an
:obj:`cogdl.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`cogdl.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
import json
import os
import os.path as osp
from itertools import product
import numpy as np
import scipy.io as scio
import tensorflow as tf
import pickle
from cogdl.data import Data, Dataset, download_url
from . import register_dataset
class MatlabMatrix(Dataset):
r"""networks from the http://leitang.net/code/social-dimension/data/ or http://snap.stanford.edu/node2vec/
Args:
root (string): Root directory where the dataset should be saved.
name (string): The name of the dataset (:obj:`"Blogcatalog"`).
"""
def __init__(self, root, name, url):
self.name = name
self.url = url
super(MatlabMatrix, self).__init__(root)
with open(self.processed_paths[0], 'rb') as input:
self.data = pickle.load(input)
@property
def raw_file_names(self):
import json
import os
import os.path as osp
from itertools import product
import numpy as np
import scipy
import torch
from cogdl.data import Data, Dataset, download_url
from . import register_dataset
class MatlabMatrix(Dataset):
r"""networks from the http://leitang.net/code/social-dimension/data/ or http://snap.stanford.edu/node2vec/
Args:
root (string): Root directory where the dataset should be saved.
name (string): The name of the dataset (:obj:`"Blogcatalog"`).
"""
def __init__(self, root, name, url):
self.name = name
self.url = url
super(MatlabMatrix, self).__init__(root)
self.data = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
splits = [self.name]