Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# coding: utf8
import clinica.engine as ce
class SpatialSVMCLI(ce.CmdParser):
def define_name(self):
"""Define the sub-command name to run this pipeline."""
self._name = 'machinelearning-prepare-spatial-svm'
def define_description(self):
"""Define a description of this pipeline."""
self._description = ('Prepare input data for SVM with spatial and anatomical regularization:\n'
'http://clinica.run/doc/MachineLeaning_PrepareSpatialSVM')
def define_options(self):
"""Define the sub-command arguments."""
from clinica.engine.cmdparser import PIPELINE_CATEGORIES
# Clinica compulsory arguments (e.g. BIDS, CAPS, group_id)
clinica_comp = self._args.add_argument_group(PIPELINE_CATEGORIES['CLINICA_COMPULSORY'])
clinica_comp.add_argument("caps_directory",
# coding: utf8
import clinica.engine as ce
class StatisticsSurfaceCLI(ce.CmdParser):
def define_name(self):
"""Define the sub-command name to run this pipeline."""
self._name = 'statistics-surface'
def define_description(self):
"""Define a description of this pipeline."""
self._description = ('Surface-based mass-univariate analysis with SurfStat:\n'
'http://clinica.run/doc/Pipelines/Stats_Surface/')
def define_options(self):
"""Define the sub-command arguments."""
from clinica.engine.cmdparser import PIPELINE_CATEGORIES
from colorama import Fore
# Clinica compulsory arguments (e.g. BIDS, CAPS, group_id)
clinica_comp = self._args.add_argument_group('%sMandatory arguments%s' % (Fore.BLUE , Fore.RESET))
self.absolute_path(args.diagnoses_tsv),
prefix=args.prefix,
mask_zeros=args.mask_zeros,
balanced=args.balanced,
outer_folds=args.cv_folds,
inner_folds=args.folds_c,
n_threads=args.n_procs,
c_range=c_range,
save_gram_matrix=args.save_gram_matrix,
save_subject_classification=args.save_subject_classification,
save_original_weights=args.save_original_weights,
save_features_image=args.save_features_image
)
class CmdParserMachineLearningSVMRB(ce.CmdParser):
def define_name(self):
self._name = 'machinelearning-svm-region'
def define_description(self):
self._description = 'Classification based on machine learning (Region-based)\n: http://clinica.run/doc/Pipelines/MachineLearning_Classification/'
def define_options(self):
self._args.add_argument("image_type",
help='it can assume two values: pet/t1, according to the images used') # noqa
self._args.add_argument("caps_directory",
help='Directory where the input NIFTI images are stored') # noqa
self._args.add_argument("group_id",
help='Current group name') # noqa
self._args.add_argument("diagnosis_tsv",
help='TSV file with subjects diagnosis') # noqa
# coding: utf8
import clinica.engine as ce
class T1FreeSurferVisualizer(ce.CmdParser):
def define_name(self):
"""Define the sub-command name to run this pipelines.
"""
self._name = 't1-freesurfer'
def define_description(self):
"""Define a description of this pipeline.
"""
self._description = 'Cross-sectional pre-processing of T1w images with FreeSurfer:\nhttp://clinica.run/doc/Pipelines/T1_FreeSurfer/'
def define_options(self):
"""Define the sub-command arguments
"""
from clinica.engine.cmdparser import PIPELINE_CATEGORIES
# coding: utf8
import clinica.engine as ce
class fMRIPreprocessingCLI(ce.CmdParser):
def define_name(self):
"""Define the sub-command name to run this pipeline."""
self._name = 'fmri-preprocessing'
def define_description(self):
"""Define a description of this pipeline."""
self._description = ('Preprocessing of raw fMRI datasets:\n'
'http://clinica.run/doc/Pipelines/fMRI_Preprocessing/')
def define_options(self):
"""Define the sub-command arguments."""
from clinica.engine.cmdparser import PIPELINE_CATEGORIES
# Clinica compulsory arguments (e.g. BIDS, CAPS, group_id)
clinica_comp = self._args.add_argument_group(PIPELINE_CATEGORIES['CLINICA_COMPULSORY'])
clinica_comp.add_argument("bids_directory",