Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
Returns:
xr.object: forecast, verif.
"""
# check that this contains more than one member
has_dims(hind, 'member', 'decadal prediction ensemble')
has_min_len(hind['member'], 1, 'decadal prediction ensemble member')
forecast, verif = _broadcast_non_CLIMPRED_DIMS_from_forecast_to_verif(hind, verif)
if not metric.probabilistic and 'member' not in verif.dims:
verif = verif.expand_dims('member')
nMember = forecast.member.size
verif = verif.isel(member=[0] * nMember)
verif['member'] = forecast['member']
return forecast, verif
__m2o = Comparison(
name='m2o',
function=_m2o,
hindcast=True,
probabilistic=True,
long_name='Verify each individual forecast member against the verification data.',
aliases=['m2r'],
)
__ALL_COMPARISONS__ = [__m2m, __m2e, __m2c, __e2c, __e2o, __m2o]
COMPARISON_ALIASES = dict()
for c in __ALL_COMPARISONS__:
if c.aliases is not None:
for a in c.aliases:
COMPARISON_ALIASES[a] = c.name
for m in ds.member.values:
forecast = _drop_members(ds, removed_member=[m]).mean('member')
reference = ds.sel(member=m).squeeze()
forecast_list.append(forecast)
reference_list.append(reference)
reference = xr.concat(reference_list, M2E_COMPARISON_DIM)
forecast = xr.concat(forecast_list, M2E_COMPARISON_DIM)
forecast[M2E_COMPARISON_DIM] = np.arange(forecast[M2E_COMPARISON_DIM].size)
reference[M2E_COMPARISON_DIM] = np.arange(reference[M2E_COMPARISON_DIM].size)
if dask.is_dask_collection(forecast):
forecast = _transpose_and_rechunk_to(forecast, ds)
reference = _transpose_and_rechunk_to(reference, ds)
return forecast, reference
__m2e = Comparison(
name='m2e',
function=_m2e,
hindcast=False,
probabilistic=False,
long_name='Comparison of all members as verification vs. the ensemble mean'
'forecast',
)
def _m2c(ds, control_member=None, metric=None):
"""
Compare all other members forecasts to control member verification.
Args:
ds (xarray object): xr.Dataset/xr.DataArray with member and ensemble
dimension.
# set incrementing members to avoid nans from broadcasting
forecast['member'] = np.arange(1, 1 + forecast.member.size)
reference = ds.sel(member=m).squeeze()
# Tiles the singular "reference" member to compare directly to all other members
if not metric.probabilistic:
forecast, reference = xr.broadcast(forecast, reference)
reference_list.append(reference)
forecast_list.append(forecast)
reference = xr.concat(reference_list, M2M_MEMBER_DIM)
forecast = xr.concat(forecast_list, M2M_MEMBER_DIM)
reference[M2M_MEMBER_DIM] = np.arange(reference[M2M_MEMBER_DIM].size)
forecast[M2M_MEMBER_DIM] = np.arange(forecast[M2M_MEMBER_DIM].size)
return forecast, reference
__m2m = Comparison(
name='m2m',
function=_m2m,
hindcast=False,
probabilistic=True,
long_name='Comparison of all forecasts vs. all other members as verification',
)
def _m2e(ds, metric=None):
"""
Compare all members to ensemble mean while leaving out the reference in
ensemble mean.
Args:
ds (xarray object): xr.Dataset/xr.DataArray with member and ensemble
dimension.
but expected by internal API.
Returns:
xr.object: forecast, verif.
"""
if 'member' in hind.dims:
forecast = hind.mean('member')
else:
forecast = hind
forecast, verif = _broadcast_non_CLIMPRED_DIMS_from_forecast_to_verif(
forecast, verif
)
return forecast, verif
__e2o = Comparison(
name='e2o',
function=_e2o,
hindcast=True,
probabilistic=False,
long_name='Verify the ensemble mean against the verification data',
aliases=['e2r'],
)
def _m2o(hind, verif, metric=None):
"""Compares each ensemble member individually to the verification data for a
``HindcastEnsemble`` setup.
Args:
hind (xarray object): Hindcast with ``member`` dimension.
verif (xarray object): Verification data.
Returns:
xr.object: forecast, reference.
"""
if control_member is None:
control_member = [0]
reference = ds.isel(member=control_member).squeeze()
# drop the member being reference
forecast = _drop_members(ds, removed_member=ds.member.values[control_member])
if not metric.probabilistic:
forecast, reference = xr.broadcast(forecast, reference)
elif 'member' in reference.coords:
del reference['member']
return forecast, reference
__m2c = Comparison(
name='m2c',
function=_m2c,
hindcast=False,
probabilistic=True,
long_name='Comparison of multiple forecasts vs. control verification',
)
def _e2c(ds, control_member=None, metric=None):
"""
Compare ensemble mean forecast to control member verification.
Args:
ds (xarray object): xr.Dataset/xr.DataArray with member and ensemble
dimension.
control_member: list of the one integer member serving as
* m2e: Compare all members to the ensemble mean.
* e2c: Compare the ensemble mean to the control.
Hindcast:
* e2o: Compare the ensemble mean to the verification data.
* m2o: Compare each ensemble member to the verification data.
Args:
comparison (str): name of comparison.
Returns:
comparison (Comparison): comparison class.
"""
if isinstance(comparison, comparisons.Comparison):
return comparison
elif isinstance(comparison, str):
# check if comparison allowed
is_in_list(comparison, list_, 'comparison')
comparison = COMPARISON_ALIASES.get(comparison, comparison)
return getattr(comparisons, '__' + comparison)
else:
is_in_list(comparison, list_, 'comparison')
return getattr(comparisons, '__' + comparison)
Returns:
xr.object: forecast, reference.
"""
# stack_dim irrelevant
if control_member is None:
control_member = [0]
reference = ds.isel(member=control_member).squeeze()
if 'member' in reference.coords:
del reference['member']
ds = _drop_members(ds, removed_member=[ds.member.values[control_member]])
forecast = ds.mean('member')
return forecast, reference
__e2c = Comparison(
name='e2c',
function=_e2c,
hindcast=False,
probabilistic=False,
long_name='Comparison of the ensemble mean forecast vs. control as verification',
)
# --------------------------------------------#
# HINDCAST COMPARISONS
# --------------------------------------------#
def _e2o(hind, verif, metric=None):
"""Compare the ensemble mean forecast to the verification data for a
``HindcastEnsemble`` setup.
Args: