Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def main():
# Check that necessary dependencies are available
import_optional_dependency("cleo")
import_optional_dependency("clikit")
import_optional_dependency(
"tabview", raise_on_missing=not sys.platform == "win32"
)
# if so, load the actual main function and call it.
from .console import main as realmain
sys.exit(realmain())
def main():
# Check that necessary dependencies are available
import_optional_dependency("cleo")
import_optional_dependency("clikit")
import_optional_dependency(
"tabview", raise_on_missing=not sys.platform == "win32"
)
# if so, load the actual main function and call it.
from .console import main as realmain
sys.exit(realmain())
def main():
# Check that necessary dependencies are available
import_optional_dependency("cleo")
import_optional_dependency("clikit")
import_optional_dependency(
"tabview", raise_on_missing=not sys.platform == "win32"
)
# if so, load the actual main function and call it.
from .console import main as realmain
sys.exit(realmain())
num_chars: int
Number of characters to use for dialect detection. If None, use the
entire file.
Note that using less than the entire file will speed up detection, but
can reduce the accuracy of the detected dialect.
**kwargs:
Additional keyword arguments for the ``pandas.read_csv`` function. You
can specify the file encoding here if needed, and it will be used
during dialect detection.
"""
if not (os.path.exists(filename) and os.path.isfile(filename)):
raise ValueError("Filename must be a regular file")
pd = import_optional_dependency("pandas")
# Use provided encoding or detect it, and record it for pandas
enc = kwargs.get("encoding") or get_encoding(filename)
kwargs["encoding"] = enc
with open(filename, "r", newline="", encoding=enc) as fid:
data = fid.read(num_chars) if num_chars else fid.read()
dialect = Detector().detect(data)
csv_dialect = dialect.to_csv_dialect()
# This is used to catch pandas' warnings when a dialect is supplied.
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="^Conflicting values for .*",
category=pd.errors.ParserWarning,