Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _ppf(self, q, dist, cache):
return numpy.arctan(evaluation.evaluate_inverse(dist, q, cache=cache))
def _ppf(self, qloc, dist, trans, cache):
qloc = evaluation.evaluate_inverse(trans, qloc, cache=cache)
xloc = evaluation.evaluate_inverse(dist, qloc, cache=cache)
return xloc
If approximation is used, this sets the maximum number of
allowed iterations in the Newton-Raphson algorithm.
tollerance (float):
If approximation is used, this set the error tolerance level
required to define a sample as converged.
Returns:
(numpy.ndarray):
Inverted probability values where
``out.shape == q_data.shape``.
"""
q_data = numpy.asfarray(q_data)
assert numpy.all((q_data >= 0) & (q_data <= 1)), "sanitize your inputs!"
shape = q_data.shape
q_data = q_data.reshape(len(self), -1)
x_data = evaluation.evaluate_inverse(self, q_data)
x_data = numpy.clip(x_data.T, self.lower, self.upper).T
x_data = x_data.reshape(shape)
return x_data
if isinstance(left, Dist):
if isinstance(right, Dist):
raise evaluation.DependencyError(
"under-defined distribution {} or {}".format(left, right))
uloc = numpy.where(numpy.asfarray(right).T > 0, uloc.T, 1-uloc.T).T
xloc = evaluation.evaluate_inverse(left, uloc, cache=cache)
xloc = (xloc.T*right.T).T
assert uloc.shape == xloc.shape
elif not isinstance(right, Dist):
xloc = left*right
else:
uloc = numpy.where(numpy.asfarray(left).T > 0, uloc.T, 1-uloc.T).T
xloc = evaluation.evaluate_inverse(right, uloc, cache=cache)
xloc = (xloc.T*left.T).T
return xloc
def _ppf(self, q, dist, cache):
return numpy.tan(evaluation.evaluate_inverse(
dist, q, cache=cache))
def _ppf(self, q, dist, cache):
return numpy.cos(evaluation.evaluate_inverse(dist, 1-q, cache=cache))
def _ppf(self, q, dist, cache):
return numpy.arccos(evaluation.evaluate_inverse(dist, 1-q, cache=cache))
if isinstance(left, Dist):
if isinstance(right, Dist):
raise StochasticallyDependentError(
"under-defined distribution {} or {}".format(left, right))
elif not isinstance(right, Dist):
return left**right
else:
out = evaluation.evaluate_inverse(right, q, cache=cache)
out = numpy.where(left < 0, 1-out, out)
out = left**out
return out
right = right + numpy.zeros(q.shape)
q = numpy.where(right < 0, 1-q, q)
out = evaluation.evaluate_inverse(left, q, cache=cache)**right
return out
def _ppf(self, q, dist, cache):
"""Point percentile function."""
return numpy.log10(evaluation.evaluate_inverse(dist, q, cache=cache))