Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division, print_function
import corner
import emcee3
import pickle
import numpy as np
from celerite.plot_setup import setup
setup(auto=True)
gp, y, true_params = pickle.load(open("transit.pkl", "rb"))
f = emcee3.backends.HDFBackend("transit.h5")
# Plot the parameter constraints
names = gp.get_parameter_names()
cols = ["log_period", "log_ror", "log_duration", "t0"]
inds = [names.index("mean:{0}".format(c)) for c in cols]
samples = np.array(f.get_coords(discard=5000, flat=True, thin=13))
samples = samples[:, inds]
samples[:, :-1] = np.exp(samples[:, :-1])
truths = np.array([true_params[k] for k in cols])
truths[:-1] = np.exp(truths[:-1])
fig = corner.corner(samples, truths=truths, smooth=0.5,
labels=[r"period", r"$R_\mathrm{P}/R_\star$", r"duration",
r"$t_0$"])
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division, print_function
import pickle
import corner
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage.filters import gaussian_filter
import emcee3
from celerite.plot_setup import setup, get_figsize, COLORS
setup(auto=True)
np.random.seed(42)
# Helpers
def format_filename(name):
base = "astero-{0}-".format(kicid)
return base + name + ".pdf"
kicid = 11615890
uHz_conv = 1e-6 * 24 * 60 * 60
# Save the current state of the GP and data
with open("astero-{0}.pkl".format(kicid), "rb") as f:
gp, fit_y, freq, power_all, power_some, n_tot = pickle.load(f)
freq_uHz = freq / uHz_conv
measurement_var = np.median(gp._yerr**2)
white_noise_all = measurement_var * uHz_conv / n_tot
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division, print_function
import numpy as np
import matplotlib.pyplot as plt
from celerite.plot_setup import setup, get_figsize
np.random.seed(42)
setup(auto=True)
def sho_psd(Q, x):
x2 = x*x
return 1.0 / ((x2 - 1)**2 + x2 / Q**2)
def sho_acf(Q, tau):
t = np.abs(tau)
if np.allclose(Q, 0.5):
return np.exp(-t) * (1.0 + t)
b = 1.0 / np.sqrt(4*Q**2 - 1)
c = 0.5 / Q
d = 0.5 * np.sqrt(4*Q**2 - 1) / Q
return np.exp(-c * t) * (np.cos(d*t)+b*np.sin(d*t))
def lorentz_psd(Q, x):
return Q**2 * (1.0 / ((x - 1)**2 * (2*Q)**2 + 1) +
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division, print_function
import os
import argparse
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from celerite.plot_setup import setup, get_figsize, COLOR_CYCLE
setup(auto=True)
parser = argparse.ArgumentParser()
parser.add_argument("platform")
parser.add_argument("--suffix", default=None)
parser.add_argument("--directory",
default=os.path.dirname(os.path.abspath(__file__)))
args = parser.parse_args()
# Compile into a matrix
suffix = ""
if args.suffix is not None:
suffix = "_" + args.suffix
fn = "benchmark_{0}{1}.csv".format(args.platform, suffix)
fn = os.path.join(args.directory, fn)
data = pd.read_csv(fn, comment="#")
from __future__ import division, print_function
import kplr
import emcee3
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from celerite.plot_setup import setup, get_figsize, COLORS
import celerite
from celerite import terms
np.random.seed(123)
setup(auto=True)
# Define the custom kernel
class RotationTerm(terms.Term):
parameter_names = ("log_amp", "log_timescale", "log_period", "log_factor")
def get_real_coefficients(self):
f = np.exp(self.log_factor)
return (
np.exp(self.log_amp) * (1.0 + f) / (2.0 + f),
np.exp(-self.log_timescale),
)
def get_complex_coefficients(self):
f = np.exp(self.log_factor)
return (
np.exp(self.log_amp) / (2.0 + f),