How to use the bpemb.BPEmb function in bpemb

To help you get started, we’ve selected a few bpemb examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github jiangxinyang227 / NLP-Project / text_generator_raw / predictors / predict.py View on Github external
def __init__(self, config):
        super(Predictor, self).__init__(config)
        self.config = config
        self.model = None
        self.sess = None
        # self.builder = tf.saved_model.builder.SavedModelBuilder("savedModel")

        if self.config["use_bpe"]:
            self.bpe_zh = BPEmb(lang="zh", vs=config["vocab_size"])
        else:
            # 加载词汇表
            self.word_to_idx = self.load_vocab()
            self.idx_to_label = {value: key for key, value in self.word_to_idx.items()}

        # 初始化模型
        self.create_model()
        print("load model finished")
        # 加载计算图
        self.load_graph()
        print("load graph finished")
github flairNLP / flair / flair / embeddings.py View on Github external
for sentence in sentences:
            for token in sentence:
                embedding = embedded[index]
                token.set_embedding(self.name, embedding)
                index += 1

        return sentences

    def __str__(self):
        return self.name

    def extra_repr(self):
        return "min_freq={}".format(self.min_freq)


class BPEmbSerializable(BPEmb):
    def __getstate__(self):
        state = self.__dict__.copy()
        # save the sentence piece model as binary file (not as path which may change)
        state["spm_model_binary"] = open(self.model_file, mode="rb").read()
        state["spm"] = None
        return state

    def __setstate__(self, state):
        from bpemb.util import sentencepiece_load

        model_file = self.model_tpl.format(lang=state["lang"], vs=state["vs"])
        self.__dict__ = state

        # write out the binary sentence piece model into the expected directory
        self.cache_dir: Path = Path(flair.cache_root) / "embeddings"
        if "spm_model_binary" in self.__dict__:
github gentaiscool / meta-emb / utils / data.py View on Github external
if word not in word2id:
                word2id[word] = len(word2id)
                id2word[len(id2word)] = word

    for i in range(len(test_inputs)):
        for word in test_inputs[i]:
            if word not in word2id:
                word2id[word] = len(word2id)
                id2word[len(id2word)] = word

    # BPE-LEVEL
    bpe_embs = []
    if bpe_lang_list is not None:
        print("Loading BPE:", bpe_lang_list)
        for i in range(len(bpe_lang_list)):
            bpemb = BPEmb(lang=bpe_lang_list[i], dim=bpe_emb_size, vs=bpe_vocab, cache_dir=bpe_cache)
            bpe_embs.append(bpemb)

    # CHAR-LEVEL
    for i in range(len(word_list)):
        for word in word_list[i]:
            for char in word:
                if char not in char2id:
                    char2id[char] = len(char2id)
                    id2char[len(id2char)] = char

    for i in range(len(train_inputs)):
        for word in train_inputs[i]:
            for char in word:
                if char not in char2id:
                    char2id[char] = len(char2id)
                    id2char[len(id2char)] = char