How to use the batchflow.models.torch.resnet.ResNet function in batchflow

To help you get started, we’ve selected a few batchflow examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github analysiscenter / batchflow / batchflow / models / torch / resnet.py View on Github external
def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 8, 36, 3]
        config['body/block/bottleneck'] = True
        return config

class ResNeXt18(ResNet):
    """ The ResNeXt-18 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet18.default_config()
        config['body/block/resnext'] = True
        return config


class ResNeXt34(ResNet):
    """ The ResNeXt-34 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet34.default_config()
        config['body/block/resnext'] = True
        return config


class ResNeXt50(ResNet):
    """ The ResNeXt-50 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet50.default_config()
        config['body/block/resnext'] = True
        return config
github analysiscenter / batchflow / batchflow / models / torch / resnet.py View on Github external
config['body/num_blocks'] = [2, 2, 2, 2]
        config['body/block/bottleneck'] = False
        return config


class ResNet34(ResNet):
    """ The original ResNet-34 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 4, 6, 3]
        config['body/block/bottleneck'] = False
        return config


class ResNet50(ResNet):
    """ The original ResNet-50 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet34.default_config()
        config['body/block/bottleneck'] = True
        return config


class ResNet101(ResNet):
    """ The original ResNet-101 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 4, 23, 3]
        config['body/block/bottleneck'] = True
        return config
github analysiscenter / batchflow / batchflow / models / torch / resnet.py View on Github external
config = ResNet34.default_config()
        config['body/block/bottleneck'] = True
        return config


class ResNet101(ResNet):
    """ The original ResNet-101 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 4, 23, 3]
        config['body/block/bottleneck'] = True
        return config


class ResNet152(ResNet):
    """ The original ResNet-152 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 8, 36, 3]
        config['body/block/bottleneck'] = True
        return config

class ResNeXt18(ResNet):
    """ The ResNeXt-18 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet18.default_config()
        config['body/block/resnext'] = True
        return config
github analysiscenter / batchflow / batchflow / models / torch / resnet.py View on Github external
if self.padding:
            shortcut = F.pad(shortcut, self.padding)
        return self.conv(x) + shortcut


class ResNet18(ResNet):
    """ The original ResNet-18 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [2, 2, 2, 2]
        config['body/block/bottleneck'] = False
        return config


class ResNet34(ResNet):
    """ The original ResNet-34 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 4, 6, 3]
        config['body/block/bottleneck'] = False
        return config


class ResNet50(ResNet):
    """ The original ResNet-50 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet34.default_config()
        config['body/block/bottleneck'] = True
        return config
github analysiscenter / batchflow / batchflow / models / torch / vnet.py View on Github external
input tensor
        skip
            skip connection

        Returns
        -------
        nn.Module
        """
        kwargs = cls.get_defaults('body', kwargs)
        layout, filters, kernel_size = cls.pop(['layout', 'filters', 'kernel_size'], kwargs)
        upsample_args = cls.pop('upsample', kwargs)

        x = cls.upsample(inputs, filters=filters, name='upsample', **upsample_args, **kwargs)
        x = cls.crop(x, skip, data_format=kwargs.get('data_format'))
        x = torch.cat([skip, x], dim=1)
        x = ResNet.block(x, layout=layout, filters=filters, kernel_size=kernel_size, downsample=0, **kwargs)

        return x
github analysiscenter / batchflow / batchflow / models / torch / resnet.py View on Github external
def __init__(self, conv, shortcut, padding=None):
        super().__init__()
        self.conv = conv
        self.shortcut = shortcut
        self.padding = padding
        self.output_shape = get_shape(conv)

    def forward(self, x):
        """ Make a forward pass """
        shortcut = self.shortcut(x) if self.shortcut else x
        if self.padding:
            shortcut = F.pad(shortcut, self.padding)
        return self.conv(x) + shortcut


class ResNet18(ResNet):
    """ The original ResNet-18 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [2, 2, 2, 2]
        config['body/block/bottleneck'] = False
        return config


class ResNet34(ResNet):
    """ The original ResNet-34 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 4, 6, 3]
        config['body/block/bottleneck'] = False
github analysiscenter / batchflow / batchflow / models / torch / resnet.py View on Github external
config = ResNet.default_config()
        config['body/num_blocks'] = [3, 4, 6, 3]
        config['body/block/bottleneck'] = False
        return config


class ResNet50(ResNet):
    """ The original ResNet-50 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet34.default_config()
        config['body/block/bottleneck'] = True
        return config


class ResNet101(ResNet):
    """ The original ResNet-101 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 4, 23, 3]
        config['body/block/bottleneck'] = True
        return config


class ResNet152(ResNet):
    """ The original ResNet-152 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 8, 36, 3]
        config['body/block/bottleneck'] = True
github analysiscenter / batchflow / batchflow / models / torch / resnet.py View on Github external
def __init__(self, conv, shortcut, padding=None):
        super().__init__()
        self.conv = conv
        self.shortcut = shortcut
        self.padding = padding
        self.output_shape = get_shape(conv)

    def forward(self, x):
        """ Make a forward pass """
        shortcut = self.shortcut(x) if self.shortcut else x
        if self.padding:
            shortcut = F.pad(shortcut, self.padding)
        return self.conv(x) + shortcut


class ResNet18(ResNet):
    """ The original ResNet-18 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [2, 2, 2, 2]
        config['body/block/bottleneck'] = False
        return config


class ResNet34(ResNet):
    """ The original ResNet-34 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 4, 6, 3]
        config['body/block/bottleneck'] = False
github analysiscenter / batchflow / batchflow / models / torch / resnet.py View on Github external
config = ResNet.default_config()
        config['body/num_blocks'] = [3, 4, 6, 3]
        config['body/block/bottleneck'] = False
        return config


class ResNet50(ResNet):
    """ The original ResNet-50 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet34.default_config()
        config['body/block/bottleneck'] = True
        return config


class ResNet101(ResNet):
    """ The original ResNet-101 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 4, 23, 3]
        config['body/block/bottleneck'] = True
        return config


class ResNet152(ResNet):
    """ The original ResNet-152 architecture """
    @classmethod
    def default_config(cls):
        config = ResNet.default_config()
        config['body/num_blocks'] = [3, 8, 36, 3]
        config['body/block/bottleneck'] = True
github analysiscenter / batchflow / batchflow / models / torch / vnet.py View on Github external
Parameters
        ----------
        inputs
            input tensor

        Returns
        -------
        nn.Module
        """
        kwargs = cls.get_defaults('body', kwargs)
        layout, kernel_size = cls.pop(['layout', 'kernel_size'], kwargs)

        x, inputs = inputs, None
        if downsample:
            x = ConvBlock(x, layout='cna', kernel_size=2, strides=2, **kwargs)
        x = ResNet.block(x, layout=layout, kernel_size=kernel_size, downsample=False, **kwargs)

        return x