Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def get_searchspace_regression():
params = {
'learning_rate': Real(1e-4, 3e-2, default=3e-4, log=True),
'weight_decay': Real(1e-12, 0.1, default=1e-6, log=True),
'dropout_prob': Real(0.0, 0.5, default=0.1),
# 'layers': Categorical(None, [200, 100], [256], [2056], [1024, 512, 128], [1024, 1024, 1024]),
'layers': Categorical(None, [200, 100], [256], [100, 50], [200, 100, 50], [50, 25], [300, 150]),
'embedding_size_factor': Real(0.5, 1.5, default=1.0),
'network_type': Categorical('widedeep','feedforward'),
'use_batchnorm': Categorical(True, False),
'activation': Categorical('relu', 'softrelu', 'tanh'),
# 'batch_size': Categorical(512, 1024, 2056, 128), # this is used in preprocessing so cannot search atm
}
return params
def get_searchspace_binary():
params = {
'learning_rate': Real(1e-4, 3e-2, default=3e-4, log=True),
'weight_decay': Real(1e-12, 0.1, default=1e-6, log=True),
'dropout_prob': Real(0.0, 0.5, default=0.1),
# 'layers': Categorical(None, [200, 100], [256], [2056], [1024, 512, 128], [1024, 1024, 1024]),
'layers': Categorical(None, [200, 100], [256], [100, 50], [200, 100, 50], [50, 25], [300, 150]),
'embedding_size_factor': Real(0.5, 1.5, default=1.0),
'network_type': Categorical('widedeep','feedforward'),
'use_batchnorm': Categorical(True, False),
'activation': Categorical('relu', 'softrelu'),
# 'batch_size': Categorical(512, 1024, 2056, 128), # this is used in preprocessing so cannot search atm
}
return params
def get_searchspace_binary():
params = {
'learning_rate': Real(1e-4, 3e-2, default=3e-4, log=True),
'weight_decay': Real(1e-12, 0.1, default=1e-6, log=True),
'dropout_prob': Real(0.0, 0.5, default=0.1),
# 'layers': Categorical(None, [200, 100], [256], [2056], [1024, 512, 128], [1024, 1024, 1024]),
'layers': Categorical(None, [200, 100], [256], [100, 50], [200, 100, 50], [50, 25], [300, 150]),
'embedding_size_factor': Real(0.5, 1.5, default=1.0),
'network_type': Categorical('widedeep','feedforward'),
'use_batchnorm': Categorical(True, False),
'activation': Categorical('relu', 'softrelu'),
# 'batch_size': Categorical(512, 1024, 2056, 128), # this is used in preprocessing so cannot search atm
}
return params
def get_searchspace_regression():
params = {
'learning_rate': Real(1e-4, 3e-2, default=3e-4, log=True),
'weight_decay': Real(1e-12, 0.1, default=1e-6, log=True),
'dropout_prob': Real(0.0, 0.5, default=0.1),
# 'layers': Categorical(None, [200, 100], [256], [2056], [1024, 512, 128], [1024, 1024, 1024]),
'layers': Categorical(None, [200, 100], [256], [100, 50], [200, 100, 50], [50, 25], [300, 150]),
'embedding_size_factor': Real(0.5, 1.5, default=1.0),
'network_type': Categorical('widedeep','feedforward'),
'use_batchnorm': Categorical(True, False),
'activation': Categorical('relu', 'softrelu', 'tanh'),
# 'batch_size': Categorical(512, 1024, 2056, 128), # this is used in preprocessing so cannot search atm
}
return params
def get_searchspace_regression():
params = {
'learning_rate': Real(1e-4, 3e-2, default=3e-4, log=True),
'weight_decay': Real(1e-12, 0.1, default=1e-6, log=True),
'dropout_prob': Real(0.0, 0.5, default=0.1),
# 'layers': Categorical(None, [200, 100], [256], [2056], [1024, 512, 128], [1024, 1024, 1024]),
'layers': Categorical(None, [200, 100], [256], [100, 50], [200, 100, 50], [50, 25], [300, 150]),
'embedding_size_factor': Real(0.5, 1.5, default=1.0),
'network_type': Categorical('widedeep','feedforward'),
'use_batchnorm': Categorical(True, False),
'activation': Categorical('relu', 'softrelu', 'tanh'),
# 'batch_size': Categorical(512, 1024, 2056, 128), # this is used in preprocessing so cannot search atm
}
return params
def get_searchspace_regression():
params = {
'learning_rate': Real(1e-4, 3e-2, default=3e-4, log=True),
'weight_decay': Real(1e-12, 0.1, default=1e-6, log=True),
'dropout_prob': Real(0.0, 0.5, default=0.1),
# 'layers': Categorical(None, [200, 100], [256], [2056], [1024, 512, 128], [1024, 1024, 1024]),
'layers': Categorical(None, [200, 100], [256], [100, 50], [200, 100, 50], [50, 25], [300, 150]),
'embedding_size_factor': Real(0.5, 1.5, default=1.0),
'network_type': Categorical('widedeep','feedforward'),
'use_batchnorm': Categorical(True, False),
'activation': Categorical('relu', 'softrelu', 'tanh'),
# 'batch_size': Categorical(512, 1024, 2056, 128), # this is used in preprocessing so cannot search atm
}
return params
def get_searchspace_multiclass(num_classes):
# Search space we use by default (only specify non-fixed hyperparameters here): # TODO: move to separate file
params = {
'learning_rate': Real(1e-4, 3e-2, default=3e-4, log=True),
'weight_decay': Real(1e-12, 0.1, default=1e-6, log=True),
'dropout_prob': Real(0.0, 0.5, default=0.1),
# 'layers': Categorical(None, [200, 100], [256], [2056], [1024, 512, 128], [1024, 1024, 1024]),
'layers': Categorical(None, [200, 100], [256], [100, 50], [200, 100, 50], [50, 25], [300, 150]),
'embedding_size_factor': Real(0.5, 1.5, default=1.0),
'network_type': Categorical('widedeep','feedforward'),
'use_batchnorm': Categorical(True, False),
'activation': Categorical('relu', 'softrelu'),
# 'batch_size': Categorical(512, 1024, 2056, 128), # this is used in preprocessing so cannot search atm
}
return params
def get_searchspace_binary():
params = {
'learning_rate': Real(1e-4, 3e-2, default=3e-4, log=True),
'weight_decay': Real(1e-12, 0.1, default=1e-6, log=True),
'dropout_prob': Real(0.0, 0.5, default=0.1),
# 'layers': Categorical(None, [200, 100], [256], [2056], [1024, 512, 128], [1024, 1024, 1024]),
'layers': Categorical(None, [200, 100], [256], [100, 50], [200, 100, 50], [50, 25], [300, 150]),
'embedding_size_factor': Real(0.5, 1.5, default=1.0),
'network_type': Categorical('widedeep','feedforward'),
'use_batchnorm': Categorical(True, False),
'activation': Categorical('relu', 'softrelu'),
# 'batch_size': Categorical(512, 1024, 2056, 128), # this is used in preprocessing so cannot search atm
}
return params