How to use the astropy.units.deg function in astropy

To help you get started, weā€™ve selected a few astropy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github poliastro / poliastro / tests / tests_twobody / test_perturbations.py View on Github external
"orbit": [
        26553.4 * u.km,
        0.741 * u.one,
        63.4 * u.deg,
        0.0 * u.deg,
        -10.12921 * u.deg,
        0.0 * u.rad,
    ],
    "period": 28 * u.day,
}

moon_leo = {
    "body": Moon,
    "tof": 60 * u.day,
    "raan": -2.18 * 1e-4 * u.deg,
    "argp": 15.0 * 1e-3 * u.deg,
    "inc": 6.0 * 1e-4 * u.deg,
    "orbit": [
        6678.126 * u.km,
        0.01 * u.one,
        28.5 * u.deg,
        0.0 * u.deg,
        0.0 * u.deg,
        0.0 * u.rad,
    ],
    "period": 28 * u.day,
}

moon_geo = {
    "body": Moon,
    "tof": 60 * u.day,
    "raan": 6.0 * u.deg,
github astropy / astropy / astropy / visualization / wcsaxes / coordinate_range.py View on Github external
if x_range > 300.:
                xw_min = coord_wraps[coord_index] - 360
                xw_max = coord_wraps[coord_index] - np.spacing(360.)
            elif xw_min < 0.:
                xw_min = max(-180., xw_min - 0.1 * x_range)
                xw_max = min(+180., xw_max + 0.1 * x_range)
            else:
                xw_min = max(0., xw_min - 0.1 * x_range)
                xw_max = min(360., xw_max + 0.1 * x_range)
        elif coord_type == 'latitude':
            xw_min = max(-90., xw_min - 0.1 * x_range)
            xw_max = min(+90., xw_max + 0.1 * x_range)

        if coord_type in LONLAT:
            xw_min *= u.deg.to(unit)
            xw_max *= u.deg.to(unit)

        ranges.append((xw_min, xw_max))

    return ranges
github sdss / marvin / python / marvin / tools / mixins / aperture.py View on Github external
else:
                ApertureClass = photutils.SkyRectangularAperture
        else:
            raise ValueError('invalid aperture_type')

        # If on-sky, converts aperture parameters to quantities
        if coord_type == 'sky':

            if aperture_type == 'circular':
                n_params = 1
            else:
                n_params = 3

            assert len(aperture_params) == n_params, 'invalid number of parameters'

            units = [astropy.units.arcsec, astropy.units.arcsec, astropy.units.deg]

            for ii in range(n_params):
                if not isinstance(aperture_params[ii], astropy.units.Quantity):
                    aperture_params[ii] *= units[ii]

        aperture = ApertureClass(coords, *aperture_params)

        # Overrides the aperture class so that it inherits from MarvinAperture and
        # can gain the methods we defined there. Sets the parent to self.
        aperture.__class__ = type('MarvinAperture', (ApertureClass, MarvinAperture), {})
        aperture.parent = self

        return aperture
github afeinstein20 / eleanor / ELLIE_v1.2 / customTPFs.py View on Github external
else:
                data = np.loadtxt(self.multiFile)
            
        else:
            data = [self.pos]

        columns = ['Gaia_ID', 'TIC_ID', 'RA', 'Dec', 'Gaia_sep', 'TIC_sep', 'Gmag', 'Tmag', 'pmra', 'pmdec', 'parallax']
        t = Table(np.zeros(11), names=columns)
        t['RA'].unit, t['Dec'].unit, t['Gaia_sep'].unit, t['TIC_sep'].unit = u.arcsec, u.arcsec, u.arcsec, u.arcsec
        t['pmra'].unit, t['pmdec'].unit = u.mas/u.year, u.mas/u.year

        for i in range(len(data)):
            pos = data[i]
            gaia = self.crossmatch_by_position(0.005, 'Mast.GaiaDR2.Crossmatch', pos)[0]
            tess = self.crossmatch_by_position(0.5, 'Mast.Tic.Crossmatch', pos)[0]
            pos[0], pos[1] = pos[0]*u.deg, pos[1]*u.deg
            gaiaPos = [gaia['MatchRA'], gaia['MatchDEC']]
            sepGaia = self.crossmatch_distance(pos, gaiaPos)
            tessPos = [tess['MatchRA'], tess['MatchDEC']]
            sepTess = self.crossmatch_distance(pos, tessPos)

            t.add_row([gaia['MatchID'], tess['MatchID'], pos[0], pos[1], sepGaia, sepTess, gaia['phot_g_mean_mag'], 
                       tess['Tmag'], gaia['pmra'], gaia['pmdec'], gaia['parallax']])

        t.remove_row(0)
        return t
github radio-astro-tools / spectral-cube / spectral_cube / spectral_cube.py View on Github external
def _check_beam_areas(self, threshold, mean_beam, mask=None):
        """
        Check that the beam areas are the same to within some threshold
        """

        if mask is not None:
            assert len(mask) == len(self.beams)
            mask = np.array(mask, dtype='bool')
        else:
            mask = np.ones(len(self.beams), dtype='bool')

        qtys = dict(sr=u.Quantity(self.beams, u.sr),
                    major=u.Quantity([bm.major for bm in self.beams], u.deg),
                    minor=u.Quantity([bm.minor for bm in self.beams], u.deg),
                    # position angles are not really comparable
                    #pa=u.Quantity([bm.pa for bm in self.beams], u.deg),
                   )

        errormessage = ""

        for (qtyname, qty) in (qtys.items()):
            minv = qty[mask].min().value
            maxv = qty[mask].max().value
            mn = getattr(mean_beam, qtyname).value
            maxdiff = np.max(np.abs((maxv-mn, minv-mn)))/mn

            if isinstance(threshold, dict):
                th = threshold[qtyname]
            else:
                th = threshold
github astropy / astropy / astropy / coordinates / angle_utilities.py View on Github external
cos_b = cos_c * cos_a + sin_c * sin_a * cos_B
    # sin_b = np.sqrt(1 - cos_b**2)
    # sine rule and cosine rule for A (using both lets arctan2 pick quadrant).
    # multiplying both sin_A and cos_A by x=sin_b * sin_c prevents /0 errors
    # at poles.  Correct for the x=0 multiplication a few lines down.
    # sin_A/sin_a == sin_B/sin_b    # Sine rule
    xsin_A = sin_a * sin_B * sin_c
    # cos_a == cos_b * cos_c + sin_b * sin_c * cos_A  # cosine rule
    xcos_A = cos_a - cos_b * cos_c

    A = Angle(np.arctan2(xsin_A, xcos_A), u.radian)
    # Treat the poles as if they are infinitesimally far from pole but at given lon
    small_sin_c = sin_c < 1e-12
    if small_sin_c.any():
        # For south pole (cos_c = -1), A = posang; for North pole, A=180 deg - posang
        A_pole = (90*u.deg + cos_c*(90*u.deg-Angle(posang, u.radian))).to(u.rad)
        if A.shape:
            # broadcast to ensure the shape is like that of A, which is also
            # affected by the (possible) shapes of lat, posang, and distance.
            small_sin_c = np.broadcast_to(small_sin_c, A.shape)
            A[small_sin_c] = A_pole[small_sin_c]
        else:
            A = A_pole

    outlon = (Angle(lon, u.radian) + A).wrap_at(360.0*u.deg).to(u.deg)
    outlat = Angle(np.arcsin(cos_b), u.radian).to(u.deg)

    return outlon, outlat
github astropy / astropy / astropy / coordinates / matching.py View on Github external
release.
    """
    if not distlimit.isscalar:
        raise ValueError('distlimit must be a scalar in search_around_3d')

    if coords1.isscalar or coords2.isscalar:
        raise ValueError('One of the inputs to search_around_3d is a scalar. '
                         'search_around_3d is intended for use with array '
                         'coordinates, not scalars.  Instead, use '
                         '``coord1.separation_3d(coord2) < distlimit`` to find '
                         'the coordinates near a scalar coordinate.')

    if len(coords1) == 0 or len(coords2) == 0:
        # Empty array input: return empty match
        return (np.array([], dtype=int), np.array([], dtype=int),
                Angle([], u.deg),
                u.Quantity([], coords1.distance.unit))

    kdt2 = _get_cartesian_kdtree(coords2, storekdtree)
    cunit = coords2.cartesian.x.unit

    # we convert coord1 to match coord2's frame.  We do it this way
    # so that if the conversion does happen, the KD tree of coord2 at least gets
    # saved. (by convention, coord2 is the "catalog" if that makes sense)
    coords1 = coords1.transform_to(coords2)

    kdt1 = _get_cartesian_kdtree(coords1, storekdtree, forceunit=cunit)

    # this is the *cartesian* 3D distance that corresponds to the given angle
    d = distlimit.to_value(cunit)

    idxs1 = []
github DarkEnergySurvey / ugali / ugali / utils / projector.py View on Github external
def gal2cel_angle(glon,glat,angle,offset=1e-7):
    from astropy.coordinates import SkyCoord
    import astropy.units as u
    origin = SkyCoord(glon,glat,unit=u.deg,frame='galactic')
    return estimate_angle(angle,origin,'fk5',offset)
github astropy / reproject / reproject / spherical_intersect / core.py View on Github external
xp_out, yp_out = np.meshgrid(x, y, indexing='xy', sparse=False, copy=False)

    world_out = wcs_out.pixel_to_world(xp_out, yp_out)

    # Convert the input world coordinates to the frame of the output world
    # coordinates.

    world_in = world_in.transform_to(world_out.frame)

    # Finally, compute the pixel positions in the *output* image of the pixels
    # from the *input* image.

    xp_inout, yp_inout = wcs_out.world_to_pixel(world_in)

    world_in_unitsph = world_in.represent_as('unitspherical')
    xw_in, yw_in = world_in_unitsph.lon.to_value(u.deg), world_in_unitsph.lat.to_value(u.deg)

    world_out_unitsph = world_out.represent_as('unitspherical')
    xw_out, yw_out = world_out_unitsph.lon.to_value(u.deg), world_out_unitsph.lat.to_value(u.deg)

    # Put together the parameters common both to the serial and parallel implementations. The aca
    # function is needed to enforce that the array will be contiguous when passed to the low-level
    # raw C function, otherwise Cython might complain.

    aca = np.ascontiguousarray
    common_func_par = [0, ny_in, nx_out, ny_out, aca(xp_inout), aca(yp_inout),
                       aca(xw_in), aca(yw_in), aca(xw_out), aca(yw_out), aca(array),
                       shape_out]

    if nproc == 1:

        array_new, weights = _reproject_slice([0, nx_in] + common_func_par)
github jrthorstensen / thorsky / thorskyclasses3.py View on Github external
west_depression = Angle(np.sqrt(2. * ( abs(self.height_above_west)
                            / (thorconsts.EQUAT_RAD))) * u.rad)
#        print "west_depression",west_depression

        if self.height_above_west > 0. :
           self.setalt = Angle(-0.833,unit=u.deg) - west_depression
                              # zd = 90 deg 50 arcmin
        elif self.height_above_west <= 0. :
           self.setalt = Angle(-0.833,unit=u.deg) + west_depression

        east_depression = Angle(np.sqrt(2. * (abs(self.height_above_east)
                            / (thorconsts.EQUAT_RAD))) * u.rad)
#        print "east_depression",east_depression

        if self.height_above_east > 0. :
           self.risealt = Angle(-0.833 * u.deg) - east_depression
                              # zd = 90 deg 50 arcmin
        elif self.height_above_east <= 0. :
           self.risealt = Angle(-0.833 * u.deg) + east_depression
#        print "self.risealt = ",self.risealt

# compute and store the speed of diurnal rotation at this site
# for later use in barycentric velocity correction.

        axisdist = np.sqrt(self.location.x ** 2 + self.location.y ** 2)
        axisdist = axisdist.to(u.km)
        # one sidereal day is about 86164.09 seconds.
        self.diurnalspeed = (2. * np.pi * axisdist) / (86164.09 * u.s)