Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
ndarray: Output complex amplitude
'''
N = Uin.shape[0] #Assume square grid
k = 2*numpy.pi/wvl #Optical Wavevector
#Observation plane coordinates
fX = numpy.arange( -N/2.,N/2.)/(N*d1)
#Observation plane coordinates
x2,y2 = numpy.meshgrid(wvl * f * fX, wvl * f * fX)
del(fX)
#Evaluate the Fresnel-Kirchoff integral but with the quadratic
#phase factor inside cancelled by the phase of the lens
Uout = numpy.exp( 1j*k/(2*f) * (x2**2 + y2**2) )/ (1j*wvl*f) * fouriertransform.ft2( Uin, d1)
return Uout
#Observation Plane Co-ords
x2,y2 = numpy.meshgrid( outputSpacing*numpy.arange(-N/2,N/2),
outputSpacing*numpy.arange(-N/2,N/2) )
r2sq = x2**2 + y2**2
#Quadratic phase factors
Q1 = numpy.exp( 1j * k/2. * (1-mag)/z * r1sq)
Q2 = numpy.exp(-1j * numpy.pi**2 * 2 * z/mag/k*fsq)
Q3 = numpy.exp(1j * k/2. * (mag-1)/(mag*z) * r2sq)
#Compute propagated field
outputComplexAmp = Q3 * fouriertransform.ift2(
Q2 * fouriertransform.ft2(Q1 * inputComplexAmp/mag,inputSpacing), df1)
return outputComplexAmp
"""
N = Uin.shape[0] #Assume square grid
k = 2*numpy.pi/wvl #optical wavevector
#Source plane coordinates
x1,y1 = numpy.meshgrid( numpy.arange(-N/2.,N/2.) * d1,
numpy.arange(-N/2.,N/2.) * d1)
#observation plane coordinates
d2 = wvl*z/(N*d1)
x2,y2 = numpy.meshgrid( numpy.arange(-N/2.,N/2.) * d2,
numpy.arange(-N/2.,N/2.) * d2 )
#evaluate Fresnel-Kirchoff integral
A = 1/(1j*wvl*z)
B = numpy.exp( 1j * k/(2*z) * (x2**2 + y2**2))
C = fouriertransform.ft2(Uin *numpy.exp(1j * k/(2*z) * (x1**2+y1**2)), d1)
Uout = A*B*C
return Uout
"""
N = Uin.shape[0] #Assume square grid
k = 2*numpy.pi/wvl #optical wavevector
#Source plane coordinates
x1,y1 = numpy.meshgrid( numpy.arange(-N/2.,N/2.) * d1,
numpy.arange(-N/2.,N/2.) * d1)
#observation plane coordinates
d2 = wvl*z/(N*d1)
x2,y2 = numpy.meshgrid( numpy.arange(-N/2.,N/2.) * d2,
numpy.arange(-N/2.,N/2.) * d2 )
#evaluate Fresnel-Kirchoff integral
A = 1/(1j*wvl*z)
B = numpy.exp( 1j * k/(2*z) * (x2**2 + y2**2))
C = fouriertransform.ft2(Uin *numpy.exp(1j * k/(2*z) * (x1**2+y1**2)), d1)
Uout = A*B*C
return Uout
ndarray: Output complex amplitude
'''
N = Uin.shape[0] #Assume square grid
k = 2*numpy.pi/wvl #Optical Wavevector
#Observation plane coordinates
fX = numpy.arange( -N/2.,N/2.)/(N*d1)
#Observation plane coordinates
x2,y2 = numpy.meshgrid(wvl * f * fX, wvl * f * fX)
del(fX)
#Evaluate the Fresnel-Kirchoff integral but with the quadratic
#phase factor inside cancelled by the phase of the lens
Uout = numpy.exp( 1j*k/(2*f) * (x2**2 + y2**2) )/ (1j*wvl*f) * fouriertransform.ft2( Uin, d1)
return Uout
#magnification
m = float(d2)/d1
#intermediate plane
try:
Dz1 = z / (1-m) #propagation distance
except ZeroDivisionError:
Dz1 = z / (1+m)
d1a = wvl * abs(Dz1) / (N*d1) #coordinates
x1a, y1a = numpy.meshgrid( numpy.arange( -N/2.,N/2.) * d1a,
numpy.arange( -N/2.,N/2.) * d1a )
#Evaluate Fresnel-Kirchhoff integral
A = 1./(1j * wvl * Dz1)
B = numpy.exp(1j * k/(2*Dz1) * (x1a**2 + y1a**2) )
C = fouriertransform.ft2(Uin * numpy.exp(1j * k/(2*Dz1) * (x1**2 + y1**2)), d1)
Uitm = A*B*C
#Observation plane
Dz2 = z - Dz1
#coordinates
x2,y2 = numpy.meshgrid( numpy.arange(-N/2., N/2.) * d2,
numpy.arange(-N/2., N/2.) * d2 )
#Evaluate the Fresnel diffraction integral
A = 1. / (1j * wvl * Dz2)
B = numpy.exp( 1j * k/(2 * Dz2) * (x2**2 + y2**2) )
C = fouriertransform.ft2(Uitm * numpy.exp( 1j * k/(2*Dz2) * (x1a**2 + y1a**2)), d1a)
Uout = A*B*C
return Uout
#magnification
m = float(d2)/d1
#intermediate plane
try:
Dz1 = z / (1-m) #propagation distance
except ZeroDivisionError:
Dz1 = z / (1+m)
d1a = wvl * abs(Dz1) / (N*d1) #coordinates
x1a, y1a = numpy.meshgrid( numpy.arange( -N/2.,N/2.) * d1a,
numpy.arange( -N/2.,N/2.) * d1a )
#Evaluate Fresnel-Kirchhoff integral
A = 1./(1j * wvl * Dz1)
B = numpy.exp(1j * k/(2*Dz1) * (x1a**2 + y1a**2) )
C = fouriertransform.ft2(Uin * numpy.exp(1j * k/(2*Dz1) * (x1**2 + y1**2)), d1)
Uitm = A*B*C
#Observation plane
Dz2 = z - Dz1
#coordinates
x2,y2 = numpy.meshgrid( numpy.arange(-N/2., N/2.) * d2,
numpy.arange(-N/2., N/2.) * d2 )
#Evaluate the Fresnel diffraction integral
A = 1. / (1j * wvl * Dz2)
B = numpy.exp( 1j * k/(2 * Dz2) * (x2**2 + y2**2) )
C = fouriertransform.ft2(Uitm * numpy.exp( 1j * k/(2*Dz2) * (x1a**2 + y1a**2)), d1a)
Uout = A*B*C
return Uout
#Evaluate Fresnel-Kirchhoff integral
A = 1./(1j * wvl * Dz1)
B = numpy.exp(1j * k/(2*Dz1) * (x1a**2 + y1a**2) )
C = fouriertransform.ft2(Uin * numpy.exp(1j * k/(2*Dz1) * (x1**2 + y1**2)), d1)
Uitm = A*B*C
#Observation plane
Dz2 = z - Dz1
#coordinates
x2,y2 = numpy.meshgrid( numpy.arange(-N/2., N/2.) * d2,
numpy.arange(-N/2., N/2.) * d2 )
#Evaluate the Fresnel diffraction integral
A = 1. / (1j * wvl * Dz2)
B = numpy.exp( 1j * k/(2 * Dz2) * (x2**2 + y2**2) )
C = fouriertransform.ft2(Uitm * numpy.exp( 1j * k/(2*Dz2) * (x1a**2 + y1a**2)), d1a)
Uout = A*B*C
return Uout