Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
if self.enc_model:
enc_data = self.enc.predict(train_data)
self.class_proto = {} # type: dict
self.class_enc = {} # type: dict
for i in range(self.classes):
idx = np.where(preds == i)[0]
self.class_proto[i] = np.expand_dims(np.mean(enc_data[idx], axis=0), axis=0)
self.class_enc[i] = enc_data[idx]
elif self.use_kdtree:
logger.warning('No encoder specified. Using k-d trees to represent class prototypes.')
if trustscore_kwargs is not None:
ts = TrustScore(**trustscore_kwargs)
else:
ts = TrustScore()
if self.is_cat: # map categorical to numerical data
train_data = ord_to_num(train_data_ord, self.d_abs)
ts.fit(train_data, preds, classes=self.classes)
self.kdtrees = ts.kdtrees
self.X_by_class = ts.X_kdtree
x = np.argmax(x)
return x != y
# define target classes for prototype if not specified yet
if target_class is None:
target_class = list(range(self.classes))
target_class.remove(np.argmax(Y, axis=1))
if verbose:
print('Predicted class: {}'.format(np.argmax(Y, axis=1)))
print('Target classes: {}'.format(target_class))
if self.is_cat and self.ohe: # map categorical to numerical data
X_ord = ohe_to_ord(X, self.cat_vars)[0]
X_num = ord_to_num(X_ord, self.d_abs)
elif self.is_cat:
X_num = ord_to_num(X, self.d_abs)
else:
X_num = X
# find closest prototype in the target class list
dist_proto = {}
if self.enc_model:
X_enc = self.enc.predict(X)
class_dict = self.class_proto if k is None else self.class_enc
for c, v in class_dict.items():
if c not in target_class:
continue
if k is None:
dist_proto[c] = np.linalg.norm(X_enc - v)
elif k is not None:
x = np.copy(x)
x[y] += self.kappa
x = np.argmax(x)
return x != y
# define target classes for prototype if not specified yet
if target_class is None:
target_class = list(range(self.classes))
target_class.remove(np.argmax(Y, axis=1))
if verbose:
print('Predicted class: {}'.format(np.argmax(Y, axis=1)))
print('Target classes: {}'.format(target_class))
if self.is_cat and self.ohe: # map categorical to numerical data
X_ord = ohe_to_ord(X, self.cat_vars)[0]
X_num = ord_to_num(X_ord, self.d_abs)
elif self.is_cat:
X_num = ord_to_num(X, self.d_abs)
else:
X_num = X
# find closest prototype in the target class list
dist_proto = {}
if self.enc_model:
X_enc = self.enc.predict(X)
class_dict = self.class_proto if k is None else self.class_enc
for c, v in class_dict.items():
if c not in target_class:
continue
if k is None: