Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def getModel(self, tau, x_train, y_train, x_control_train):
if tau == 0:
return self.getUnbiasedModel(x_train, y_train, x_control_train)
dist_params, dist_params_train = ut.getDistribution(x_train, y_train, x_control_train)
eps = 0.01
L = math.ceil(tau/eps)
z_1 = sum(x_control_train)/(float(len(x_control_train)))
z_0 = 1 - z_1
p, q = [0,0],[0,0]
paramsOpt, samples = [], []
maxAcc = 0
maxGamma = 0
span = self.getRange(eps, tau)
for (a,b) in span:
acc, gamma = 0, 0
#print("-----",a,b)
samples = ut.getRandomSamples(dist_params_train)
#try :
def getUnbiasedModel(self, x_train, y_train, x_control_train):
dist_params, dist_params_train = ut.getDistribution(x_train, y_train, x_control_train)
eps = 0.01
z_1 = sum(x_control_train)/(float(len(x_control_train)))
z_0 = 1 - z_1
p, q = [0,0],[0,0]
params = [0]*self.getNumOfParams()
samples = ut.getRandomSamples(dist_params_train)
def model(x):
return self.getValueForX(dist_params, p, q, params, samples, z_0, z_1, x, 0)
return model
def testSyntheticData(self):
#A,S,F = [],[],[]
x_train, y_train, x_control_train, x_control_test, x_test, y_test = ut.getData()
dist_params, dist_params_train = ut.getDistribution(x_train, y_train, x_control_train)
mean, cov, meanT, covT = dist_params["mean"], dist_params["cov"], dist_params_train["mean"], dist_params_train["cov"]
#print(mean)
meanN = [0] * len(mean)
covN = np.identity(len(mean))
#clf = GaussianMixture(n_components=2, covariance_type='full')
means = [mean, meanN]
covariances = [cov, covN]
lw = float(sys.argv[2])
weights = [1-lw, lw]
#for i in range(0,4):
LR, LE = len(y_train), len(y_test)
train, test = [],[]
for i in range(0, LR):