How to use AeroSandbox - 7 common examples

To help you get started, we’ve selected a few AeroSandbox examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github peterdsharpe / AeroSandbox / aerosandbox / geometry.py View on Github external
# Rotate the mean camber line (MCL) and "upper minus mcl"
        new_mcl_coordinates_after = np.transpose(
            rotation_matrix @ np.transpose(mcl_coordinates_after - hinge_point)) + hinge_point
        new_upper_minus_mcl_after = np.transpose(rotation_matrix @ np.transpose(upper_minus_mcl_after))

        # Do blending

        # Assemble airfoil
        new_mcl_coordinates = np.vstack((mcl_coordinates_before, new_mcl_coordinates_after))
        new_upper_minus_mcl = np.vstack((upper_minus_mcl_before, new_upper_minus_mcl_after))
        upper_coordinates = np.flipud(new_mcl_coordinates + new_upper_minus_mcl)
        lower_coordinates = new_mcl_coordinates - new_upper_minus_mcl
        coordinates = np.vstack((upper_coordinates, lower_coordinates[1:, :]))

        new_airfoil = Airfoil(name=self.name + " flapped", coordinates=coordinates, repanel=False)
        return new_airfoil  # TODO fix self-intersecting airfoils at high deflections
github peterdsharpe / AeroSandbox / aerosandbox / geometry.py View on Github external
# Do the contraction
        upper_minus_mcl_adjusted = self.upper_minus_mcl - self.upper_minus_mcl[-1, :] * np.expand_dims(scale_factor, 1)

        # Recreate coordinates
        upper_coordinates_adjusted = np.flipud(self.mcl_coordinates + upper_minus_mcl_adjusted)
        lower_coordinates_adjusted = self.mcl_coordinates - upper_minus_mcl_adjusted

        coordinates = np.vstack((
            upper_coordinates_adjusted[:-1, :],
            lower_coordinates_adjusted
        ))

        # Make a new airfoil with the coordinates
        name = self.name + ", with sharp TE"
        new_airfoil = Airfoil(name=name, coordinates=coordinates, repanel=False)

        return new_airfoil
github peterdsharpe / AeroSandbox / aerosandbox / geometry.py View on Github external
# Generate a cosine-spaced list of points from 0 to 1
        s = cosspace(n_points=n_points_per_side)

        x_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 0])
        y_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 1])
        x_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 0])
        y_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 1])

        x_coors = np.hstack((x_upper_func(s), x_lower_func(s)[1:]))
        y_coors = np.hstack((y_upper_func(s), y_lower_func(s)[1:]))

        coordinates = np.column_stack((x_coors, y_coors))

        # Make a new airfoil with the coordinates
        name = self.name + ", repaneled to " + str(n_points_per_side) + " pts"
        new_airfoil = Airfoil(name=name, coordinates=coordinates, repanel=False)

        return new_airfoil
github peterdsharpe / AeroSandbox / aerosandbox / geometry.py View on Github external
foil1 = copy.deepcopy(airfoil1)
    foil2 = copy.deepcopy(airfoil2)

    if blend_fraction == 0:
        return foil1
    if blend_fraction == 1:
        return foil2
    assert blend_fraction >= 0 and blend_fraction <= 1, "blend_fraction is out of the valid range of 0 to 1!"

    # Repanel to ensure the same number of points and the same point distribution on both airfoils.
    foil1 = foil1.get_repaneled_airfoil(n_points_per_side=200)
    foil2 = foil2.get_repaneled_airfoil(n_points_per_side=200)

    blended_coordinates = (1 - blend_fraction) * foil1.coordinates + blend_fraction * foil2.coordinates

    new_airfoil = Airfoil(name="Blended Airfoils", coordinates=blended_coordinates)

    return new_airfoil
github peterdsharpe / AeroSandbox / aerosandbox / aerodynamics.py View on Github external
profiler.dump_stats(filename)
            # profiler.print_stats()

    return wrapper


class AeroProblem:
    def __init__(self,
                 airplane, # Object of Airplane class
                 op_point, # Object of OperatingPoint class
                 ):
        self.airplane = airplane
        self.op_point = op_point


class vlm1(AeroProblem):
    # NOTE: USE VLM2 INSTEAD OF THIS; VLM1 HAS BEEN COMPLETELY SUPERSEDED IN PERFORMANCE AND FUNCTIONALITY BY VLM2.
    # Traditional vortex-lattice-method approach with quadrilateral paneling, horseshoe vortices from each one, etc.
    # Implemented exactly as The Good Book says (Drela, "Flight Vehicle Aerodynamics", p. 130-135)

    @profile
    def run(self, verbose=True):
        self.verbose = verbose

        if self.verbose: print("Running VLM1 calculation...")
        # Deprecation warning (use VLM2 instead)
        if self.verbose: print("WARNING! VLM1 has been wholly eclipsed in performance and functionality by VLM2. The VLM1 source code has been left intact for validation purposes and backwards-compatibility, but it will not be supported going forward.")


        self.make_panels()
        self.setup_geometry()
        self.setup_operating_point()
github peterdsharpe / AeroSandbox / aerosandbox / aerodynamics.py View on Github external
ax.text(
                    panel.colocation_point[0],
                    panel.colocation_point[1],
                    panel.colocation_point[2],
                    str(panel_num),
                )

        x, y, z, s = self.airplane.get_bounding_cube()
        ax.set_xlim3d((x - s, x + s))
        ax.set_ylim3d((y - s, y + s))
        ax.set_zlim3d((z - s, z + s))
        plt.tight_layout()
        plt.show()


class vlm2(AeroProblem):
    # Vortex-Lattice Method aerodynamics code written from the ground up with lessons learned from writing VLM1.
    # Should eventually eclipse VLM1 in performance and render it obsolete.
    #
    # Notable improvements over VLM1:
    #   # Specifically written to be reverse-mode-AD-compatible at every step
    #   # Supports control surfaces
    #   # Supports bodies in quasi-steady rotation (nonzero p, q, and r)
    #   # Supports calculation of stability derivatives
    #   # Vortex lattice follows the mean camber line for higher accuracy (though control deflections are done by rotating normals)
    #   # TODO: Takes advantage of the connectivity of the vortex lattice to speed up calculate_Vij() by almost exactly 2x
    #   # TODO: calculate_Vij() is parallelized, one core per wing
    #
    # Usage:
    #   # Set up a problem using the syntax in the AeroProblem constructor (e.g. "vlm2(airplane = a, op_point = op)" for some Airplane a and OperatingPoint op)
    #   # Call vlm2.run() to run the problem.
    #   # Access results in the command line, or through properties of the vlm2 class.
github peterdsharpe / AeroSandbox / aerosandbox / geometry.py View on Github external
x = np.hstack((x_U, x_L))
                    y = np.hstack((y_U, y_L))

                    coordinates = np.column_stack((x, y))

                    self.coordinates = coordinates
                    return
                else:
                    print("Unfortunately, only 4-series NACA airfoils can be generated at this time.")

        # Try to read from airfoil database
        try:
            import importlib.resources
            from . import airfoils
            raw_text = importlib.resources.read_text(airfoils, name + '.dat')
            trimmed_text = raw_text[raw_text.find('\n'):]

            coordinates1D = np.fromstring(trimmed_text, sep='\n')  # returns the coordinates in a 1D array
            assert len(
                coordinates1D) % 2 == 0, 'File was found in airfoil database, but it could not be read correctly!'  # Should be even

            coordinates = np.reshape(coordinates1D, (-1, 2))
            self.coordinates = coordinates
            return

        except FileNotFoundError:
            print("File was not found in airfoil database!")

AeroSandbox

AeroSandbox is a Python package that helps you design and optimize aircraft and other engineered systems.

MIT
Latest version published 5 months ago

Package Health Score

78 / 100
Full package analysis