How to use the aerosandbox.geometry.Airfoil function in AeroSandbox

To help you get started, we’ve selected a few AeroSandbox examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github peterdsharpe / AeroSandbox / aerosandbox / geometry.py View on Github external
# Rotate the mean camber line (MCL) and "upper minus mcl"
        new_mcl_coordinates_after = np.transpose(
            rotation_matrix @ np.transpose(mcl_coordinates_after - hinge_point)) + hinge_point
        new_upper_minus_mcl_after = np.transpose(rotation_matrix @ np.transpose(upper_minus_mcl_after))

        # Do blending

        # Assemble airfoil
        new_mcl_coordinates = np.vstack((mcl_coordinates_before, new_mcl_coordinates_after))
        new_upper_minus_mcl = np.vstack((upper_minus_mcl_before, new_upper_minus_mcl_after))
        upper_coordinates = np.flipud(new_mcl_coordinates + new_upper_minus_mcl)
        lower_coordinates = new_mcl_coordinates - new_upper_minus_mcl
        coordinates = np.vstack((upper_coordinates, lower_coordinates[1:, :]))

        new_airfoil = Airfoil(name=self.name + " flapped", coordinates=coordinates, repanel=False)
        return new_airfoil  # TODO fix self-intersecting airfoils at high deflections
github peterdsharpe / AeroSandbox / aerosandbox / geometry.py View on Github external
# Do the contraction
        upper_minus_mcl_adjusted = self.upper_minus_mcl - self.upper_minus_mcl[-1, :] * np.expand_dims(scale_factor, 1)

        # Recreate coordinates
        upper_coordinates_adjusted = np.flipud(self.mcl_coordinates + upper_minus_mcl_adjusted)
        lower_coordinates_adjusted = self.mcl_coordinates - upper_minus_mcl_adjusted

        coordinates = np.vstack((
            upper_coordinates_adjusted[:-1, :],
            lower_coordinates_adjusted
        ))

        # Make a new airfoil with the coordinates
        name = self.name + ", with sharp TE"
        new_airfoil = Airfoil(name=name, coordinates=coordinates, repanel=False)

        return new_airfoil
github peterdsharpe / AeroSandbox / aerosandbox / geometry.py View on Github external
# Generate a cosine-spaced list of points from 0 to 1
        s = cosspace(n_points=n_points_per_side)

        x_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 0])
        y_upper_func = sp_interp.PchipInterpolator(x=upper_distances_from_TE_normalized, y=upper_original_coors[:, 1])
        x_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 0])
        y_lower_func = sp_interp.PchipInterpolator(x=lower_distances_from_LE_normalized, y=lower_original_coors[:, 1])

        x_coors = np.hstack((x_upper_func(s), x_lower_func(s)[1:]))
        y_coors = np.hstack((y_upper_func(s), y_lower_func(s)[1:]))

        coordinates = np.column_stack((x_coors, y_coors))

        # Make a new airfoil with the coordinates
        name = self.name + ", repaneled to " + str(n_points_per_side) + " pts"
        new_airfoil = Airfoil(name=name, coordinates=coordinates, repanel=False)

        return new_airfoil
github peterdsharpe / AeroSandbox / aerosandbox / geometry.py View on Github external
foil1 = copy.deepcopy(airfoil1)
    foil2 = copy.deepcopy(airfoil2)

    if blend_fraction == 0:
        return foil1
    if blend_fraction == 1:
        return foil2
    assert blend_fraction >= 0 and blend_fraction <= 1, "blend_fraction is out of the valid range of 0 to 1!"

    # Repanel to ensure the same number of points and the same point distribution on both airfoils.
    foil1 = foil1.get_repaneled_airfoil(n_points_per_side=200)
    foil2 = foil2.get_repaneled_airfoil(n_points_per_side=200)

    blended_coordinates = (1 - blend_fraction) * foil1.coordinates + blend_fraction * foil2.coordinates

    new_airfoil = Airfoil(name="Blended Airfoils", coordinates=blended_coordinates)

    return new_airfoil

AeroSandbox

AeroSandbox is a Python package that helps you design and optimize aircraft and other engineered systems.

MIT
Latest version published 3 months ago

Package Health Score

78 / 100
Full package analysis