Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
print(journal.parameters)
print(journal.weights)
# do post analysis
print(journal.posterior_mean())
print(journal.posterior_cov())
print(journal.posterior_histogram())
# print configuration
print(journal.configuration)
# save and load journal
journal.save("experiments.jnl")
from abcpy.output import Journal
new_journal = Journal.fromFile('experiments.jnl')
journal = Journal(full_output)
journal.configuration["type_model"] = [type(model).__name__ for model in self.model]
journal.configuration["type_dist_func"] = type(self.distance).__name__
journal.configuration["type_kernel_func"] = type(self.kernel)
journal.configuration["n_samples"] = self.n_samples
journal.configuration["n_samples_per_param"] = self.n_samples_per_param
journal.configuration["beta"] = beta
journal.configuration["delta"] = delta
journal.configuration["v"] = v
journal.configuration["ar_cutoff"] = ar_cutoff
journal.configuration["resample"] = resample
journal.configuration["n_update"] = n_update
journal.configuration["adaptcov"] = adaptcov
journal.configuration["full_output"] = full_output
else:
journal = Journal.fromFile(journal_file)
accepted_parameters = np.zeros(shape=(n_samples, len(self.get_parameters(self.model))))
distances = np.zeros(shape=(n_samples,))
smooth_distances = np.zeros(shape=(n_samples,))
accepted_weights = np.ones(shape=(n_samples, 1))
all_distances = None
accepted_cov_mat = None
if resample == None:
resample = n_samples
if n_update == None:
n_update = n_samples
sample_array = np.ones(shape=(steps,))
sample_array[0] = n_samples
sample_array[1:] = n_update
journal.get_parameters()
journal.get_weights()
# do post analysis
journal.posterior_mean()
journal.posterior_cov()
journal.posterior_histogram()
# print configuration
print(journal.configuration)
# save and load journal
journal.save("experiments.jnl")
from abcpy.output import Journal
new_journal = Journal.fromFile('experiments.jnl')
journal.plot_posterior_distr()
print(journal.parameters)
print(journal.weights)
# do post analysis
print(journal.posterior_mean())
print(journal.posterior_cov())
print(journal.posterior_histogram())
# print configuration
print(journal.configuration)
# save and load journal
journal.save("experiments.jnl")
from abcpy.output import Journal
new_journal = Journal.fromFile('experiments.jnl')
print(journal.get_stored_output_values())
print(journal.weights)
# do post analysis
print(journal.posterior_mean())
print(journal.posterior_cov())
print(journal.posterior_histogram())
# print configuration
print(journal.configuration)
# save and load journal
journal.save("experiments.jnl")
from abcpy.output import Journal
new_journal = Journal.fromFile('experiments.jnl')
print(journal.get_stored_output_values())
print(journal.weights)
# do post analysis
print(journal.posterior_mean())
print(journal.posterior_cov())
print(journal.posterior_histogram())
# print configuration
print(journal.configuration)
# save and load journal
journal.save("experiments.jnl")
from abcpy.output import Journal
new_journal = Journal.fromFile('experiments.jnl')