Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
training_set_list = load_file_list(train_config['training_set'])
train_dataset = SolDataset(training_set_list,
rescale_range=train_config['sol']['training_rescale_range'],
transform=CropTransform(train_config['sol']['crop_params']))
train_dataloader = DataLoader(train_dataset,
batch_size=train_config['sol']['batch_size'],
shuffle=True, num_workers=0,
collate_fn=sol_dataset.collate)
batches_per_epoch = int(train_config['sol']['images_per_epoch']/train_config['sol']['batch_size'])
train_dataloader = DatasetWrapper(train_dataloader, batches_per_epoch)
test_set_list = load_file_list(train_config['validation_set'])
test_dataset = SolDataset(test_set_list,
rescale_range=train_config['sol']['validation_rescale_range'],
random_subset_size=train_config['sol']['validation_subset_size'],
transform=None)
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=0, collate_fn=sol_dataset.collate)
alpha_alignment = train_config['sol']['alpha_alignment']
alpha_backprop = train_config['sol']['alpha_backprop']
sol, lf, hw = init_model(config, only_load='sol')
dtype = torch.cuda.FloatTensor
lowest_loss = np.inf
lowest_loss_i = 0
epoch = -1
def training_step(config):
train_config = config['training']
allowed_training_time = train_config['sol']['reset_interval']
init_training_time = time.time()
training_set_list = load_file_list(train_config['training_set'])
train_dataset = SolDataset(training_set_list,
rescale_range=train_config['sol']['training_rescale_range'],
transform=CropTransform(train_config['sol']['crop_params']))
train_dataloader = DataLoader(train_dataset,
batch_size=train_config['sol']['batch_size'],
shuffle=True, num_workers=0,
collate_fn=sol_dataset.collate)
batches_per_epoch = int(train_config['sol']['images_per_epoch']/train_config['sol']['batch_size'])
train_dataloader = DatasetWrapper(train_dataloader, batches_per_epoch)
test_set_list = load_file_list(train_config['validation_set'])
test_dataset = SolDataset(test_set_list,
rescale_range=train_config['sol']['validation_rescale_range'],
random_subset_size=train_config['sol']['validation_subset_size'],
transform=None)
training_set_list = load_file_list(pretrain_config['training_set'])
train_dataset = SolDataset(training_set_list,
rescale_range=pretrain_config['sol']['training_rescale_range'],
transform=CropTransform(pretrain_config['sol']['crop_params']))
train_dataloader = DataLoader(train_dataset,
batch_size=pretrain_config['sol']['batch_size'],
shuffle=True, num_workers=0,
collate_fn=sol.sol_dataset.collate)
batches_per_epoch = int(pretrain_config['sol']['images_per_epoch']/pretrain_config['sol']['batch_size'])
train_dataloader = DatasetWrapper(train_dataloader, batches_per_epoch)
test_set_list = load_file_list(pretrain_config['validation_set'])
test_dataset = SolDataset(test_set_list,
rescale_range=pretrain_config['sol']['validation_rescale_range'],
transform=None)
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=0, collate_fn=sol.sol_dataset.collate)
base0 = sol_network_config['base0']
base1 = sol_network_config['base1']
sol = StartOfLineFinder(base0, base1)
if torch.cuda.is_available():
sol.cuda()
dtype = torch.cuda.FloatTensor
else:
print "Warning: Not using a GPU, untested"
dtype = torch.FloatTensor
alpha_alignment = pretrain_config['sol']['alpha_alignment']
import json
import yaml
import sys
import os
import math
from utils import transformation_utils, drawing
with open(sys.argv[1]) as f:
config = yaml.load(f)
sol_network_config = config['network']['sol']
pretrain_config = config['pretraining']
training_set_list = load_file_list(pretrain_config['training_set'])
train_dataset = SolDataset(training_set_list,
rescale_range=pretrain_config['sol']['training_rescale_range'],
transform=CropTransform(pretrain_config['sol']['crop_params']))
train_dataloader = DataLoader(train_dataset,
batch_size=pretrain_config['sol']['batch_size'],
shuffle=True, num_workers=0,
collate_fn=sol.sol_dataset.collate)
batches_per_epoch = int(pretrain_config['sol']['images_per_epoch']/pretrain_config['sol']['batch_size'])
train_dataloader = DatasetWrapper(train_dataloader, batches_per_epoch)
test_set_list = load_file_list(pretrain_config['validation_set'])
test_dataset = SolDataset(test_set_list,
rescale_range=pretrain_config['sol']['validation_rescale_range'],
transform=None)
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=0, collate_fn=sol.sol_dataset.collate)