How to use the sidekit.IdMap function in SIDEKIT

To help you get started, we’ve selected a few SIDEKIT examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Anwarvic / Speaker-Recognition / data_init.py View on Github external
Args:
            group (string): name of the group that we want to create idmap for
        NOTE: Duplicated entries are allowed in each list.
        """
        assert group in ["enroll", "test"],\
            "Invalid group name!! Choose either 'enroll', 'test'"
        # Make enrollment (IdMap) file list
        group_dir = os.path.join(self.audio_dir, group)
        group_files = sorted(os.listdir(group_dir))
        # list of model IDs
        group_models = [files.split('.')[0] for files in group_files]
        # list of audio segments IDs
        group_segments = [group+"/"+f for f in group_files]
        
        # Generate IdMap
        group_idmap = sidekit.IdMap()
        group_idmap.leftids = np.asarray(group_models)
        group_idmap.rightids = np.asarray(group_segments)
        group_idmap.start = np.empty(group_idmap.rightids.shape, '|O')
        group_idmap.stop = np.empty(group_idmap.rightids.shape, '|O')
        if group_idmap.validate():
            group_idmap.write(os.path.join(self.task_dir, group+'_idmap.h5'))
            #generate tv_idmap and plda_idmap as well
            if group == "enroll":
                group_idmap.write(os.path.join(self.task_dir, 'tv_idmap.h5'))
                group_idmap.write(os.path.join(self.task_dir, 'plda_idmap.h5'))
        else:
            raise RuntimeError('Problems with creating idMap file')
github stdm / ZHAW_deep_voice / networks / i_vector / ivec_controller.py View on Github external
def load_data(self, folder_name, speaker_list):

        self.logger.info('load data')

        with open(join(get_training('i_vector', folder_name), speaker_list +"_files.txt"), "r") as fh:
            ubm_list = np.array([line.rstrip() for line in fh])

        with open(join(get_training('i_vector', folder_name), speaker_list +"_ids.txt"), "r") as fh:
            id_list = np.array([line.rstrip() for line in fh])



        tv_idmap = sidekit.IdMap()
        tv_idmap.leftids = id_list
        tv_idmap.rightids = ubm_list
        tv_idmap.start = np.empty((len(ubm_list)), dtype="|O")
        tv_idmap.stop = np.empty((len(ubm_list)), dtype="|O")



        return ubm_list, tv_idmap