Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def run(data, runs=1000):
weights = []
sharpes = np.zeros(runs)
returns = np.zeros(sharpes.shape)
drawdowns = np.zeros(sharpes.shape)
volatility = np.zeros(sharpes.shape)
for i in range(runs):
w = create_random_weights(len(data.columns))
r = (data * w).sum(axis=1)
weights.append(w)
returns[i] = r.add(1).prod()
sharpes[i] = stats.sharpe(r)
drawdowns[i] = stats.max_drawdown(r)
volatility[i] = stats.volatility(r)
return Weights({
'data': data,
'weights': weights,
'sharpes': sharpes,
'returns': returns,
'drawdowns': drawdowns,
'volatility': volatility
})
metrics['Best Month %'] = _stats.best(df, aggregate='M') * pct
metrics['Worst Month %'] = _stats.worst(df, aggregate='M') * pct
metrics['Best Year %'] = _stats.best(df, aggregate='A') * pct
metrics['Worst Year %'] = _stats.worst(df, aggregate='A') * pct
# dd
metrics['~~~~'] = blank
for ix, row in dd.iterrows():
metrics[ix] = row
metrics['Recovery Factor'] = _stats.recovery_factor(df)
metrics['Ulcer Index'] = _stats.ulcer_index(df, rf)
# win rate
if mode.lower() == 'full':
metrics['~~~~~'] = blank
metrics['Avg. Up Month %'] = _stats.avg_win(df, aggregate='M') * pct
metrics['Avg. Down Month %'] = _stats.avg_loss(df, aggregate='M') * pct
metrics['Win Days %%'] = _stats.win_rate(df) * pct
metrics['Win Month %%'] = _stats.win_rate(df, aggregate='M') * pct
metrics['Win Quarter %%'] = _stats.win_rate(df, aggregate='Q') * pct
metrics['Win Year %%'] = _stats.win_rate(df, aggregate='A') * pct
if "benchmark" in df:
metrics['~~~~~~~'] = blank
greeks = _stats.greeks(df['returns'], df['benchmark'])
metrics['Beta'] = [str(round(greeks['beta'], 2)), '-']
metrics['Alpha'] = [str(round(greeks['alpha'], 2)), '-']
# prepare for display
for col in metrics.columns:
try:
metrics[col] = metrics[col].astype(float).round(2)
df, aggregate='M') * pct
metrics['Expected Yearly %%'] = _stats.expected_return(
df, aggregate='A') * pct
metrics['Kelly Criterion %'] = _stats.kelly_criterion(df) * pct
metrics['Risk of Ruin %'] = _stats.risk_of_ruin(df)
metrics['Daily Value-at-Risk %'] = -abs(_stats.var(df) * pct)
metrics['Expected Shortfall (cVaR) %'] = -abs(_stats.cvar(df) * pct)
metrics['~~~~~~'] = blank
metrics['Payoff Ratio'] = _stats.payoff_ratio(df)
metrics['Profit Factor'] = _stats.profit_factor(df)
metrics['Common Sense Ratio'] = _stats.common_sense_ratio(df)
metrics['CPC Index'] = _stats.cpc_index(df)
metrics['Tail Ratio'] = _stats.tail_ratio(df)
metrics['Outlier Win Ratio'] = _stats.outlier_win_ratio(df)
metrics['Outlier Loss Ratio'] = _stats.outlier_loss_ratio(df)
# returns
metrics['~~'] = blank
comp_func = _stats.comp if compounded else _np.sum
today = df.index[-1] # _dt.today()
metrics['MTD %'] = comp_func(
df[df.index >= _dt(today.year, today.month, 1)]) * pct
d = today - _td(3*365/12)
metrics['3M %'] = comp_func(
df[df.index >= _dt(d.year, d.month, d.day)]) * pct
d = today - _td(6*365/12)
else:
metrics['Volatility (ann.) %'] = [ret_vol]
metrics['Calmar'] = _stats.calmar(df)
metrics['Skew'] = _stats.skew(df)
metrics['Kurtosis'] = _stats.kurtosis(df)
metrics['~~~~~~~~~~'] = blank
metrics['Expected Daily %%'] = _stats.expected_return(df) * pct
metrics['Expected Monthly %%'] = _stats.expected_return(
df, aggregate='M') * pct
metrics['Expected Yearly %%'] = _stats.expected_return(
df, aggregate='A') * pct
metrics['Kelly Criterion %'] = _stats.kelly_criterion(df) * pct
metrics['Risk of Ruin %'] = _stats.risk_of_ruin(df)
metrics['Daily Value-at-Risk %'] = -abs(_stats.var(df) * pct)
metrics['Expected Shortfall (cVaR) %'] = -abs(_stats.cvar(df) * pct)
metrics['~~~~~~'] = blank
metrics['Payoff Ratio'] = _stats.payoff_ratio(df)
metrics['Profit Factor'] = _stats.profit_factor(df)
metrics['Common Sense Ratio'] = _stats.common_sense_ratio(df)
metrics['CPC Index'] = _stats.cpc_index(df)
metrics['Tail Ratio'] = _stats.tail_ratio(df)
metrics['Outlier Win Ratio'] = _stats.outlier_win_ratio(df)
metrics['Outlier Loss Ratio'] = _stats.outlier_loss_ratio(df)
# returns
metrics['~~'] = blank
metrics['Sortino'] = _stats.sortino(df, rf)
metrics['Max Drawdown %'] = blank
metrics['Longest DD Days'] = blank
if mode.lower() == 'full':
ret_vol = _stats.volatility(df['returns']) * pct
if "benchmark" in df:
bench_vol = _stats.volatility(df['benchmark']) * pct
metrics['Volatility (ann.) %'] = [ret_vol, bench_vol]
metrics['R^2'] = _stats.r_squared(df['returns'], df['benchmark'])
else:
metrics['Volatility (ann.) %'] = [ret_vol]
metrics['Calmar'] = _stats.calmar(df)
metrics['Skew'] = _stats.skew(df)
metrics['Kurtosis'] = _stats.kurtosis(df)
metrics['~~~~~~~~~~'] = blank
metrics['Expected Daily %%'] = _stats.expected_return(df) * pct
metrics['Expected Monthly %%'] = _stats.expected_return(
df, aggregate='M') * pct
metrics['Expected Yearly %%'] = _stats.expected_return(
df, aggregate='A') * pct
metrics['Kelly Criterion %'] = _stats.kelly_criterion(df) * pct
metrics['Risk of Ruin %'] = _stats.risk_of_ruin(df)
metrics['Daily Value-at-Risk %'] = -abs(_stats.var(df) * pct)
metrics['Expected Shortfall (cVaR) %'] = -abs(_stats.cvar(df) * pct)
metrics['~~~~~~'] = blank
_po.avg_win = stats.avg_win
_po.avg_loss = stats.avg_loss
_po.volatility = stats.volatility
_po.implied_volatility = stats.implied_volatility
_po.sharpe = stats.sharpe
_po.sortino = stats.sortino
_po.cagr = stats.cagr
_po.rar = stats.rar
_po.skew = stats.skew
_po.kurtosis = stats.kurtosis
_po.calmar = stats.calmar
_po.ulcer_index = stats.ulcer_index
_po.ulcer_performance_index = stats.ulcer_performance_index
_po.upi = stats.upi
_po.risk_of_ruin = stats.risk_of_ruin
_po.ror = stats.ror
_po.value_at_risk = stats.value_at_risk
_po.var = stats.var
_po.conditional_value_at_risk = stats.conditional_value_at_risk
_po.cvar = stats.cvar
_po.expected_shortfall = stats.expected_shortfall
_po.tail_ratio = stats.tail_ratio
_po.payoff_ratio = stats.payoff_ratio
_po.win_loss_ratio = stats.win_loss_ratio
_po.profit_ratio = stats.profit_ratio
_po.profit_factor = stats.profit_factor
_po.gain_to_pain_ratio = stats.gain_to_pain_ratio
_po.cpc_index = stats.cpc_index
_po.common_sense_ratio = stats.common_sense_ratio
_po.outlier_win_ratio = stats.outlier_win_ratio
_po.outlier_loss_ratio = stats.outlier_loss_ratio
_po.recovery_factor = stats.recovery_factor
metrics['Worst Month %'] = _stats.worst(df, aggregate='M') * pct
metrics['Best Year %'] = _stats.best(df, aggregate='A') * pct
metrics['Worst Year %'] = _stats.worst(df, aggregate='A') * pct
# dd
metrics['~~~~'] = blank
for ix, row in dd.iterrows():
metrics[ix] = row
metrics['Recovery Factor'] = _stats.recovery_factor(df)
metrics['Ulcer Index'] = _stats.ulcer_index(df, rf)
# win rate
if mode.lower() == 'full':
metrics['~~~~~'] = blank
metrics['Avg. Up Month %'] = _stats.avg_win(df, aggregate='M') * pct
metrics['Avg. Down Month %'] = _stats.avg_loss(df, aggregate='M') * pct
metrics['Win Days %%'] = _stats.win_rate(df) * pct
metrics['Win Month %%'] = _stats.win_rate(df, aggregate='M') * pct
metrics['Win Quarter %%'] = _stats.win_rate(df, aggregate='Q') * pct
metrics['Win Year %%'] = _stats.win_rate(df, aggregate='A') * pct
if "benchmark" in df:
metrics['~~~~~~~'] = blank
greeks = _stats.greeks(df['returns'], df['benchmark'])
metrics['Beta'] = [str(round(greeks['beta'], 2)), '-']
metrics['Alpha'] = [str(round(greeks['alpha'], 2)), '-']
# prepare for display
for col in metrics.columns:
try:
metrics[col] = metrics[col].astype(float).round(2)
if display or "internal" in kwargs:
metrics['~~~~~~~~~~'] = blank
metrics['Expected Daily %%'] = _stats.expected_return(df) * pct
metrics['Expected Monthly %%'] = _stats.expected_return(
df, aggregate='M') * pct
metrics['Expected Yearly %%'] = _stats.expected_return(
df, aggregate='A') * pct
metrics['Kelly Criterion %'] = _stats.kelly_criterion(df) * pct
metrics['Risk of Ruin %'] = _stats.risk_of_ruin(df)
metrics['Daily Value-at-Risk %'] = -abs(_stats.var(df) * pct)
metrics['Expected Shortfall (cVaR) %'] = -abs(_stats.cvar(df) * pct)
metrics['~~~~~~'] = blank
metrics['Payoff Ratio'] = _stats.payoff_ratio(df)
metrics['Profit Factor'] = _stats.profit_factor(df)
metrics['Common Sense Ratio'] = _stats.common_sense_ratio(df)
metrics['CPC Index'] = _stats.cpc_index(df)
metrics['Tail Ratio'] = _stats.tail_ratio(df)
metrics['Outlier Win Ratio'] = _stats.outlier_win_ratio(df)
metrics['Outlier Loss Ratio'] = _stats.outlier_loss_ratio(df)
# returns
metrics['~~'] = blank
comp_func = _stats.comp if compounded else _np.sum
today = df.index[-1] # _dt.today()
metrics['MTD %'] = comp_func(
df[df.index >= _dt(today.year, today.month, 1)]) * pct
d = today - _td(3*365/12)