Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_generator():
for i in pyprind.prog_bar(range(n), stream=sys.stdout):
time.sleep(sleeptime)
import pyprind
n = 1000000
mbar = pyprind.ProgBar(n, stream=sys.stdout)
for i in range(n):
mbar.update()
mper = pyprind.ProgPercent(n, stream=sys.stdout)
for i in range(n):
mper.update()
mbar2 = pyprind.ProgBar(n, stream='test')
for i in range(n):
mbar2.update()
for i in pyprind.prog_bar(range(n), stream=sys.stdout):
# do something
pass
for i in pyprind.prog_percent(range(n), stream=sys.stdout):
# do something
pass
for i in pyprind.prog_bar(range(n), stream='test'):
# do something
pass
else:
media_lc = 'image'
media_uc = 'Image'
src_media = src_images
media_targets = img_targets
l.info('Generating {} jobs...'.format(media_lc))
jobs = []
skipped = 0
si = src_media(cfg)
if not si:
l.debug('No source {}s'.format(media_lc))
return
for src in pyprind.prog_bar(si):
j, s = media_targets(cfg, src, dry_run)
jobs.extend(j)
skipped += s
l.info('{} jobs: running {}, skipped {}, total {}'
.format(media_uc, len(jobs), skipped, len(jobs) + skipped))
return jobs
sess.run(tf.global_variables_initializer())
itr = 0
path_length = 0
path_return = 0
terminal = False
initial = False
observation = self.env.reset()
with tf.variable_scope("sample_policy"):
sample_policy = Serializable.clone(self.policy)
for epoch in range(self.n_epochs):
logger.push_prefix('epoch #%d | ' % epoch)
logger.log("Training started")
train_qf_itr, train_policy_itr = 0, 0
for epoch_itr in pyprind.prog_bar(range(self.epoch_length)):
# Execute policy
if terminal:
# Note that if the last time step ends an episode, the very
# last state and observation will be ignored and not added
# to the replay pool
observation = self.env.reset()
sample_policy.reset()
self.es_path_returns.append(path_return)
path_length = 0
path_return = 0
initial = True
else:
initial = False
action = self.es.get_action(itr, observation, policy=sample_policy) # qf=qf)
next_observation, reward, terminal, _ = self.env.step(action)
if extra_inputs is None:
extra_inputs = tuple()
last_loss = f_loss(*(tuple(inputs) + extra_inputs))
start_time = time.time()
dataset = BatchDataset(
inputs,
self._batch_size,
extra_inputs=extra_inputs
#, randomized=self._randomized
)
itr = 0
for epoch in pyprind.prog_bar(list(range(self._max_epochs))):
for batch in dataset.iterate(update=True):
f_opt(*batch)
if yield_itr is not None and (itr % (yield_itr + 1)) == 0:
yield
itr += 1
new_loss = f_loss(*(tuple(inputs) + extra_inputs))
if self._verbose:
logger.log("Epoch %d, loss %s" % (epoch, new_loss))
if self._callback or callback:
elapsed = time.time() - start_time
callback_args = dict(
loss=new_loss,
params=self._target.get_param_values(trainable=True)
if self._target else None,
memory = ReplayMem(
obs_dim=self.env.observation_space.flat_dim,
act_dim=self.env.action_space.flat_dim,
memory_size=self.memory_size)
itr = 0
path_length = 0
path_return = 0
end = False
obs = self.env.reset()
for epoch in range(self.n_epochs):
logger.push_prefix("epoch #%d | " % epoch)
logger.log("Training started")
for epoch_itr in pyprind.prog_bar(range(self.epoch_length)):
# run the policy
if end:
# reset the environment and stretegy when an episode ends
obs = self.env.reset()
self.strategy.reset()
# self.policy.reset()
self.strategy_path_returns.append(path_return)
path_length = 0
path_return = 0
# note action is sampled from the policy not the target policy
act = self.strategy.get_action(obs, self.policy)
nxt, rwd, end, _ = self.env.step(act)
path_length += 1
path_return += rwd
terminal = False
initial = False
observation = self.env.reset()
with tf.variable_scope("sample_policy"):
sample_policy = Serializable.clone(self.policy)
for epoch in range(self.n_epochs):
logger.push_prefix('epoch #%d | ' % epoch)
logger.log("Training started")
train_qf_itr, train_policy_itr = 0, 0
#sample a policy function from the posterior at every episode
#move in the entire episode with the sampled policy function?
for epoch_itr in pyprind.prog_bar(range(self.epoch_length)):
# Execute policy
if terminal: # or path_length > self.max_path_length:
# Note that if the last time step ends an episode, the very
# last state and observation will be ignored and not added
# to the replay pool
observation = self.env.reset()
self.es.reset()
sample_policy.reset()
self.es_path_returns.append(path_return)
path_length = 0
path_return = 0
initial = True
else:
initial = False
action = self.es.get_action(itr, observation, policy=sample_policy) # qf=qf)
except ValueError:
signature = []
except:
1/0#fix me now
if 'is_child' in signature:
d[field] = constructors[sel['Python type']][0](c, is_child = is_child)
else:
d[field] = constructors[sel['Python type']][0](c)
return d
if __name__ == '__main__':
folder = r'C:\Dropbox (ecoinvent)\ei-int\technical\releases\3.4\Undefined\datasets'
result_folder = r'C:\Dropbox (ecoinvent)\ei-int\technical\releases\3.4\Undefined\test'
filelist = utils.build_file_list(folder)
for filename in pyprind.prog_bar(filelist):
f = TestObject('', '', folder = folder, filename = filename)
# f.write_to_spold(result_folder)
break