Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
.format(len(select)))
gnm = prody.GNM(pdb.getTitle())
gnm.buildKirchhoff(select, cutoff, gamma)
gnm.calcModes(nmodes)
LOGGER.info('Writing numerical output.')
if opt.npz:
prody.saveModel(gnm)
prody.writeNMD(os.path.join(outdir, prefix + '.nmd'), gnm, select)
outall = opt.all
delim, ext, format = opt.delim, opt.ext, opt.numformat
if outall or opt.eigen:
prody.writeArray(os.path.join(outdir, prefix + '_evectors'+ext),
gnm.getArray(), delimiter=delim, format=format)
prody.writeArray(os.path.join(outdir, prefix + '_evalues'+ext),
gnm.getEigenvalues(), delimiter=delim, format=format)
if outall or opt.beta:
fout = prody.openFile(prefix + '_beta.txt', 'w', folder=outdir)
fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4s} {0[3]:5s} {0[4]:5s}\n'
.format(['C', 'RES', '####', 'Exp.', 'The.']))
for data in zip(select.getChids(), select.getResnames(),
select.getResnums(), select.getBetas(),
prody.calcTempFactors(gnm, select)):
fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4d} {0[3]:5.2f} {0[4]:5.2f}\n'
.format(data))
fout.close()
if outall or opt.covar:
prody.writeArray(os.path.join(outdir, prefix + '_covariance'+ext),
gnm.getCovariance(), delimiter=delim, format=format)
if outall or opt.ccorr:
extend + '.nmd'), *extended)
else:
prody.LOGGER.warn('Model could not be extended, provide a PDB or '
'PSF file.')
outall = kwargs.get('outall')
delim = kwargs.get('numdelim')
ext = kwargs.get('numext')
format = kwargs.get('numformat')
if outall or kwargs.get('outeig'):
prody.writeArray(join(outdir, prefix + '_evectors'+ext),
pca.getArray(), delimiter=delim, format=format)
prody.writeArray(join(outdir, prefix + '_evalues'+ext),
pca.getEigvals(), delimiter=delim, format=format)
if outall or kwargs.get('outcov'):
prody.writeArray(join(outdir, prefix + '_covariance'+ext),
pca.getCovariance(), delimiter=delim, format=format)
if outall or kwargs.get('outcc') or kwargs.get('outhm'):
cc = prody.calcCrossCorr(pca)
if outall or kwargs.get('outcc'):
prody.writeArray(join(outdir, prefix + '_cross-correlations' +
ext), cc, delimiter=delim, format=format)
if outall or kwargs.get('outhm'):
resnums = select.getResnums()
hmargs = {} if resnums is None else {'resnums': resnums}
prody.writeHeatmap(join(outdir, prefix + '_cross-correlations.hm'),
cc, xlabel='Residue', ylabel='Residue',
title=pca.getTitle() + ' cross-correlations',
**hmargs)
if outall or kwargs.get('outsf'):
prody.writeArray(join(outdir, prefix + '_sqfluct'+ext),
pca.getArray(), delimiter=delim, format=format)
prody.writeArray(os.path.join(outdir, prefix + '_evalues'+ext),
pca.getEigenvalues(), delimiter=delim, format=format)
if outall or opt.covar:
prody.writeArray(os.path.join(outdir, prefix + '_covariance'+ext),
pca.getCovariance(), delimiter=delim, format=format)
if outall or opt.ccorr:
prody.writeArray(os.path.join(outdir, prefix + '_cross-correlations' +
ext), prody.calcCrossCorr(pca),
delimiter=delim, format=format)
if outall or opt.sqflucts:
prody.writeArray(os.path.join(outdir, prefix + '_sqfluct'+ext),
prody.calcSqFlucts(pca), delimiter=delim,
format=format)
if outall or opt.proj:
prody.writeArray(os.path.join(outdir, prefix + '_proj'+ext),
prody.calcProjection(ensemble, pca), delimiter=delim,
format=format)
figall, cc, sf, sp = opt.figures, opt.cc, opt.sf, opt.sp
if figall or cc or sf or sp:
format = format.lower()
try:
import matplotlib.pyplot as plt
except ImportError:
LOGGER.warning('Matplotlib could not be imported. '
'Figures are not saved.')
else:
LOGGER.info('Saving graphical output.')
format, width, height, dpi = \
opt.figformat, opt.width, opt.height, opt.dpi
delim = kwargs.get('numdelim')
ext = kwargs.get('numext')
format = kwargs.get('numformat')
if outall or kwargs.get('outeig'):
prody.writeArray(join(outdir, prefix + '_evectors'+ext),
pca.getArray(), delimiter=delim, format=format)
prody.writeArray(join(outdir, prefix + '_evalues'+ext),
pca.getEigvals(), delimiter=delim, format=format)
if outall or kwargs.get('outcov'):
prody.writeArray(join(outdir, prefix + '_covariance'+ext),
pca.getCovariance(), delimiter=delim, format=format)
if outall or kwargs.get('outcc') or kwargs.get('outhm'):
cc = prody.calcCrossCorr(pca)
if outall or kwargs.get('outcc'):
prody.writeArray(join(outdir, prefix + '_cross-correlations' +
ext), cc, delimiter=delim, format=format)
if outall or kwargs.get('outhm'):
resnums = select.getResnums()
hmargs = {} if resnums is None else {'resnums': resnums}
prody.writeHeatmap(join(outdir, prefix + '_cross-correlations.hm'),
cc, xlabel='Residue', ylabel='Residue',
title=pca.getTitle() + ' cross-correlations',
**hmargs)
if outall or kwargs.get('outsf'):
prody.writeArray(join(outdir, prefix + '_sqfluct'+ext),
prody.calcSqFlucts(pca), delimiter=delim,
format=format)
if outall or kwargs.get('outproj'):
prody.writeArray(join(outdir, prefix + '_proj'+ext),
prody.calcProjection(ensemble, pca), delimiter=delim,
LOGGER.info('{0:d} atoms will be used for ANM calculations.'
.format(len(select)))
anm = prody.ANM(pdb.getTitle())
anm.buildHessian(select, cutoff, gamma)
anm.calcModes(nmodes)
LOGGER.info('Writing numerical output.')
if opt.npz:
prody.saveModel(anm)
prody.writeNMD(os.path.join(outdir, prefix + '.nmd'), anm, select)
outall = opt.all
delim, ext, format = opt.delim, opt.ext, opt.numformat
if outall or opt.eigen:
prody.writeArray(os.path.join(outdir, prefix + '_evectors'+ext),
anm.getArray(), delimiter=delim, format=format)
prody.writeArray(os.path.join(outdir, prefix + '_evalues'+ext),
anm.getEigenvalues(), delimiter=delim, format=format)
if outall or opt.beta:
fout = prody.openFile(prefix + '_beta.txt', 'w', folder=outdir)
fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4s} {0[3]:5s} {0[4]:5s}\n'
.format(['C', 'RES', '####', 'Exp.', 'The.']))
for data in zip(select.getChids(), select.getResnames(),
select.getResnums(), select.getBetas(),
prody.calcTempFactors(anm, select)):
fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4d} {0[3]:5.2f} {0[4]:5.2f}\n'
.format(data))
fout.close()
if outall or opt.covar:
prody.writeArray(os.path.join(outdir, prefix + '_covariance'+ext),
anm.getCovariance(), delimiter=delim, format=format)
gnm.getEigvals(), delimiter=delim, format=format)
if outall or kwargs.get('outbeta'):
from prody.utilities import openFile
fout = openFile(prefix + '_beta.txt', 'w', folder=outdir)
fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4s} {0[3]:5s} {0[4]:5s}\n'
.format(['C', 'RES', '####', 'Exp.', 'The.']))
for data in zip(select.getChids(), select.getResnames(),
select.getResnums(), select.getBetas(),
prody.calcTempFactors(gnm, select)):
fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4d} {0[3]:5.2f} {0[4]:5.2f}\n'
.format(data))
fout.close()
if outall or kwargs.get('outcov'):
prody.writeArray(join(outdir, prefix + '_covariance'+ext),
gnm.getCovariance(), delimiter=delim, format=format)
if outall or kwargs.get('outcc') or kwargs.get('outhm'):
cc = prody.calcCrossCorr(gnm)
if outall or kwargs.get('outcc'):
prody.writeArray(join(outdir, prefix + '_cross-correlations' +
ext), cc, delimiter=delim, format=format)
if outall or kwargs.get('outhm'):
prody.writeHeatmap(join(outdir, prefix + '_cross-correlations.hm'),
cc, resnum=select.getResnums(),
xlabel='Residue', ylabel='Residue',
title=gnm.getTitle() + ' cross-correlations')
if outall or kwargs.get('kirchhoff'):
prody.writeArray(join(outdir, prefix + '_kirchhoff'+ext),
gnm.getKirchhoff(), delimiter=delim, format=format)
anm.getEigenvalues(), delimiter=delim, format=format)
if outall or opt.beta:
fout = prody.openFile(prefix + '_beta.txt', 'w', folder=outdir)
fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4s} {0[3]:5s} {0[4]:5s}\n'
.format(['C', 'RES', '####', 'Exp.', 'The.']))
for data in zip(select.getChids(), select.getResnames(),
select.getResnums(), select.getBetas(),
prody.calcTempFactors(anm, select)):
fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4d} {0[3]:5.2f} {0[4]:5.2f}\n'
.format(data))
fout.close()
if outall or opt.covar:
prody.writeArray(os.path.join(outdir, prefix + '_covariance'+ext),
anm.getCovariance(), delimiter=delim, format=format)
if outall or opt.ccorr:
prody.writeArray(os.path.join(outdir, prefix + '_cross-correlations'
+ ext),
prody.calcCrossCorr(anm), delimiter=delim,
format=format)
if outall or opt.hessian:
prody.writeArray(os.path.join(outdir, prefix + '_hessian'+ext),
anm.getHessian(), delimiter=delim, format=format)
if outall or opt.kirchhoff:
prody.writeArray(os.path.join(outdir, prefix + '_kirchhoff'+ext),
anm.getKirchhoff(), delimiter=delim, format=format)
if outall or opt.sqflucts:
prody.writeArray(os.path.join(outdir, prefix + '_sqflucts'+ext),
prody.calcSqFlucts(anm), delimiter=delim,
format=format)
figall, cc, sf, bf, cm = opt.figures, opt.cc, opt.sf, opt.bf, opt.cm
if outall or opt.beta:
fout = prody.openFile(prefix + '_beta.txt', 'w', folder=outdir)
fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4s} {0[3]:5s} {0[4]:5s}\n'
.format(['C', 'RES', '####', 'Exp.', 'The.']))
for data in zip(select.getChids(), select.getResnames(),
select.getResnums(), select.getBetas(),
prody.calcTempFactors(gnm, select)):
fout.write('{0[0]:1s} {0[1]:4s} {0[2]:4d} {0[3]:5.2f} {0[4]:5.2f}\n'
.format(data))
fout.close()
if outall or opt.covar:
prody.writeArray(os.path.join(outdir, prefix + '_covariance'+ext),
gnm.getCovariance(), delimiter=delim, format=format)
if outall or opt.ccorr:
prody.writeArray(os.path.join(outdir, prefix + '_cross-correlations'
+ ext),
prody.calcCrossCorr(gnm), delimiter=delim,
format=format)
if outall or opt.kirchhoff:
prody.writeArray(os.path.join(outdir, prefix + '_kirchhoff'+ext),
gnm.getKirchhoff(), delimiter=delim, format=format)
if outall or opt.sqflucts:
prody.writeArray(os.path.join(outdir, prefix + '_sqfluct'+ext),
prody.calcSqFlucts(gnm), delimiter=delim,
format=format)
figall, cc, sf, bf, cm, modes = \
opt.figures, opt.cc, opt.sf, opt.bf, opt.cm, opt.modes
if figall or cc or sf or bf or cm or modes:
try:
import matplotlib.pyplot as plt
extended = prody.extendModel(pca[:nmodes], select, pdb)
else:
extended = prody.extendModel(pca[:nmodes], select,
select | pdb.bb)
prody.writeNMD(join(outdir, prefix + '_extended_' +
extend + '.nmd'), *extended)
else:
prody.LOGGER.warn('Model could not be extended, provide a PDB or '
'PSF file.')
outall = kwargs.get('outall')
delim = kwargs.get('numdelim')
ext = kwargs.get('numext')
format = kwargs.get('numformat')
if outall or kwargs.get('outeig'):
prody.writeArray(join(outdir, prefix + '_evectors'+ext),
pca.getArray(), delimiter=delim, format=format)
prody.writeArray(join(outdir, prefix + '_evalues'+ext),
pca.getEigvals(), delimiter=delim, format=format)
if outall or kwargs.get('outcov'):
prody.writeArray(join(outdir, prefix + '_covariance'+ext),
pca.getCovariance(), delimiter=delim, format=format)
if outall or kwargs.get('outcc') or kwargs.get('outhm'):
cc = prody.calcCrossCorr(pca)
if outall or kwargs.get('outcc'):
prody.writeArray(join(outdir, prefix + '_cross-correlations' +
ext), cc, delimiter=delim, format=format)
if outall or kwargs.get('outhm'):
resnums = select.getResnums()
hmargs = {} if resnums is None else {'resnums': resnums}
prody.writeHeatmap(join(outdir, prefix + '_cross-correlations.hm'),
cc, xlabel='Residue', ylabel='Residue',