Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_logging_append(self):
train_gen = some_data_generator(20)
valid_gen = some_data_generator(20)
logger = CSVLogger(self.csv_filename)
history = self.model.fit_generator(train_gen, valid_gen, epochs=10, steps_per_epoch=5, callbacks=[logger])
logger = CSVLogger(self.csv_filename, append=True)
history2 = self.model.fit_generator(train_gen,
valid_gen,
epochs=20,
steps_per_epoch=5,
initial_epoch=10,
callbacks=[logger])
self._test_logging(history + history2)
def test_logging(self):
train_gen = some_data_generator(20)
valid_gen = some_data_generator(20)
logger = CSVLogger(self.csv_filename)
history = self.model.fit_generator(train_gen, valid_gen, epochs=10, steps_per_epoch=5, callbacks=[logger])
self._test_logging(history)
def test_logging_with_batch_granularity(self):
train_gen = some_data_generator(20)
valid_gen = some_data_generator(20)
logger = CSVLogger(self.csv_filename, batch_granularity=True)
history = History()
self.model.fit_generator(train_gen, valid_gen, epochs=10, steps_per_epoch=5, callbacks=[logger, history])
self._test_logging(history.history)
def test_logging_append(self):
train_gen = some_data_generator(20)
valid_gen = some_data_generator(20)
logger = CSVLogger(self.csv_filename)
history = self.model.fit_generator(train_gen, valid_gen, epochs=10, steps_per_epoch=5, callbacks=[logger])
logger = CSVLogger(self.csv_filename, append=True)
history2 = self.model.fit_generator(train_gen,
valid_gen,
epochs=20,
steps_per_epoch=5,
initial_epoch=10,
callbacks=[logger])
self._test_logging(history + history2)
callbacks = [] if callbacks is None else callbacks
lr_schedulers = [] if lr_schedulers is None else lr_schedulers
# Copy callback list.
callbacks = list(callbacks)
tensorboard_writer = None
initial_epoch = 1
if self.logging:
if not os.path.exists(self.directory):
os.makedirs(self.directory)
# Restarting optimization if needed.
initial_epoch = self._load_epoch_state(lr_schedulers)
callbacks += [CSVLogger(self.log_filename, separator='\t', append=initial_epoch != 1)]
callbacks += self._init_model_restoring_callbacks(initial_epoch, save_every_epoch)
callbacks += [
ModelCheckpoint(self.model_checkpoint_filename,
verbose=False,
temporary_filename=self.model_checkpoint_tmp_filename)
]
callbacks += [
OptimizerCheckpoint(self.optimizer_checkpoint_filename,
verbose=False,
temporary_filename=self.optimizer_checkpoint_tmp_filename)
]
# We save the last epoch number after the end of the epoch so that the
# _load_epoch_state() knows which epoch to restart the optimization.
callbacks += [