Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_io(self, height=50, width=100):
color_data = (255 * np.random.rand(height, width, 3)).astype(np.uint8)
im = ColorImage(color_data, 'a')
file_root = COLOR_IM_FILEROOT
# save and load png
filename = file_root + '.png'
im.save(filename)
loaded_im = ColorImage.open(filename)
self.assertTrue(np.sum(np.abs(loaded_im.data - im.data)) < 1e-5, msg='ColorImage data changed after load png')
# save and load jpg
filename = file_root + '.jpg'
im.save(filename)
loaded_im = ColorImage.open(filename)
# save and load npy
filename = file_root + '.npy'
im.save(filename)
loaded_im = ColorImage.open(filename)
self.assertTrue(np.sum(np.abs(loaded_im.data - im.data)) < 1e-5, msg='ColorImage data changed after load npy')
# save and load npz
filename = file_root + '.npz'
im.save(filename)
loaded_im = ColorImage.open(filename)
self.assertTrue(np.sum(np.abs(loaded_im.data - im.data)) < 1e-5, msg='ColorImage data changed after load npz')
def test_io(self, height=50, width=100):
color_data = (255 * np.random.rand(height, width, 3)).astype(np.uint8)
im = ColorImage(color_data, 'a')
file_root = COLOR_IM_FILEROOT
# save and load png
filename = file_root + '.png'
im.save(filename)
loaded_im = ColorImage.open(filename)
self.assertTrue(np.sum(np.abs(loaded_im.data - im.data)) < 1e-5, msg='ColorImage data changed after load png')
# save and load jpg
filename = file_root + '.jpg'
im.save(filename)
loaded_im = ColorImage.open(filename)
# save and load npy
filename = file_root + '.npy'
im.save(filename)
loaded_im = ColorImage.open(filename)
self.assertTrue(np.sum(np.abs(loaded_im.data - im.data)) < 1e-5, msg='ColorImage data changed after load npy')
# save and load npz
filename = file_root + '.npz'
im.save(filename)
print('TRAIN OBJECTS:', train_objects)
print('VALIDATION OBJECTS:', validation_objects)
for objects, directory in [(train_objects, train_dir), (validation_objects, validation_dir)]:
for objname in objects:
output_dir = os.path.join(directory, objname)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
image_names = object_images[objname]
for i, fn in enumerate(image_names):
print(fn)
path, base = os.path.split(fn)
image = ColorImage.open(fn)
samples = augment(image, num_images_per_view, crop_size, preserve_scale, rotate, keep_full_images)
# Save original, which is always first sample
orig_output_dir = os.path.join(orig_dir, objname)
if not os.path.exists(orig_output_dir):
os.makedirs(orig_output_dir)
orig = samples[0]
orig.save(os.path.join(orig_output_dir, 'view_{:06d}.png'.format(i)))
# Save samples
samples_output_dir = os.path.join(output_dir, 'view_{:06d}'.format(i))
if not os.path.exists(samples_output_dir):
os.makedirs(samples_output_dir)
for sample in samples:
sample_name = uuid.uuid4().hex
sample.save(os.path.join(samples_output_dir, '{}.png'.format(sample_name)))
import numpy as np
import os
import sys
from perception import ColorImage
from perception.models import ResNet50
DEFAULT_RESNET50_WEIGHTS = '/home/autolab/Public/data/dex-net/data/models/classification/resnet50/weights.h5'
if __name__ == '__main__':
image_filename = sys.argv[1]
with open('data/images/imagenet.json', 'r') as f:
label_to_category = eval(f.read())
im = ColorImage.open(image_filename)
resnet = ResNet50(weights_filename=DEFAULT_RESNET50_WEIGHTS)
out = resnet.predict(im)
label = resnet.top_prediction(im)
category = label_to_category[label]
plt.figure()
plt.imshow(im.bgr2rgb().data)
plt.title('Pred: %s' %(category))
plt.show()
IPython.embed()
import numpy as np
import os
import sys
from perception import ColorImage
from perception.models import VGG16
DEFAULT_VGG16_WEIGHTS = '/home/autolab/Public/data/dex-net/data/models/classification/vgg16/weights.h5'
if __name__ == '__main__':
image_filename = sys.argv[1]
with open('data/images/imagenet.json', 'r') as f:
label_to_category = eval(f.read())
im = ColorImage.open(image_filename)
vgg = VGG16(weights_filename=DEFAULT_VGG16_WEIGHTS)
out = vgg.predict(im)
label = vgg.top_prediction(im)
category = label_to_category[label]
plt.figure()
plt.imshow(im.bgr2rgb().data)
plt.title('Pred: %s' %(category))
plt.show()
IPython.embed()
import numpy as np
import os
import sys
from perception import ColorImage
from perception.models import ClassificationCNN
if __name__ == '__main__':
model_dir = sys.argv[1]
model_type = sys.argv[2]
image_filename = sys.argv[3]
#with open('data/images/imagenet.json', 'r') as f:
# label_to_category = eval(f.read())
im = ColorImage.open(image_filename)
cnn = ClassificationCNN.open(model_dir, model_typename=model_type)
out = cnn.predict(im)
label = cnn.top_prediction(im)
#category = label_to_category[label]
plt.figure()
plt.imshow(im.bgr2rgb().data)
plt.title('Pred: %d' %(label))
plt.axis('off')
plt.show()