How to use the orange3.Orange.preprocess.transformation.Normalizer function in Orange3

To help you get started, we’ve selected a few Orange3 examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github BioDepot / BioDepot-workflow-builder / orange3 / Orange / preprocess / continuize.py View on Github external
or treat == Continuize.RemoveMultinomial
                and len(var.values) > 2
            ):
                return []
            if treat == Continuize.AsOrdinal:
                new_var = ContinuousVariable(
                    var.name, compute_value=Identity(var), sparse=var.sparse
                )
                return [new_var]
            if treat == Continuize.AsNormalizedOrdinal:
                n_values = max(1, len(var.values))
                if self.zero_based:
                    return [
                        ContinuousVariable(
                            var.name,
                            compute_value=Normalizer(var, 0, 1 / (n_values - 1)),
                            sparse=var.sparse,
                        )
                    ]
                else:
                    return [
                        ContinuousVariable(
                            var.name,
                            compute_value=Normalizer(
                                var, (n_values - 1) / 2, 2 / (n_values - 1)
                            ),
                            sparse=var.sparse,
                        )
                    ]

            new_vars = []
            if treat == Continuize.Indicators:
github BioDepot / BioDepot-workflow-builder / orange3 / Orange / preprocess / normalize.py View on Github external
def normalize_by_span(self, dist, var):
        dma, dmi = dist.max(), dist.min()
        diff = dma - dmi
        if diff < 1e-15:
            diff = 1
        if self.zero_based:
            return ContinuousVariable(
                var.name, compute_value=Norm(var, dmi, 1 / diff), sparse=var.sparse
            )
        else:
            return ContinuousVariable(
                var.name,
                compute_value=Norm(var, (dma + dmi) / 2, 2 / diff),
                sparse=var.sparse,
            )
github BioDepot / BioDepot-workflow-builder / orange3 / Orange / preprocess / preprocess.py View on Github external
dist = distribution.get_distribution(data, var)
            if self.center != self.NoCentering:
                c = self.center(dist)
                dist[0, :] -= c
            else:
                c = 0

            if self.scale != self.NoScaling:
                s = self.scale(dist)
                if s < 1e-15:
                    s = 1
            else:
                s = 1
            factor = 1 / s
            transformed_var = var.copy(
                compute_value=transformation.Normalizer(var, c, factor)
            )
            if s != 1:
                transformed_var.number_of_decimals = 3
            return transformed_var
github BioDepot / BioDepot-workflow-builder / orange3 / Orange / preprocess / normalize.py View on Github external
def normalize_by_span(self, dist, var):
        dma, dmi = dist.max(), dist.min()
        diff = dma - dmi
        if diff < 1e-15:
            diff = 1
        if self.zero_based:
            return ContinuousVariable(
                var.name, compute_value=Norm(var, dmi, 1 / diff), sparse=var.sparse
            )
        else:
            return ContinuousVariable(
                var.name,
                compute_value=Norm(var, (dma + dmi) / 2, 2 / diff),
                sparse=var.sparse,
            )
github BioDepot / BioDepot-workflow-builder / orange3 / Orange / preprocess / continuize.py View on Github external
return [new_var]
            if treat == Continuize.AsNormalizedOrdinal:
                n_values = max(1, len(var.values))
                if self.zero_based:
                    return [
                        ContinuousVariable(
                            var.name,
                            compute_value=Normalizer(var, 0, 1 / (n_values - 1)),
                            sparse=var.sparse,
                        )
                    ]
                else:
                    return [
                        ContinuousVariable(
                            var.name,
                            compute_value=Normalizer(
                                var, (n_values - 1) / 2, 2 / (n_values - 1)
                            ),
                            sparse=var.sparse,
                        )
                    ]

            new_vars = []
            if treat == Continuize.Indicators:
                base = -1
            elif treat in (Continuize.FirstAsBase, Continuize.RemoveMultinomial):
                base = max(var.base_value, 0)
            else:
                base = dists[var_ptr].modus()
            ind_class = [Indicator1, Indicator][self.zero_based]
            for i, val in enumerate(var.values):
                if i == base:
github BioDepot / BioDepot-workflow-builder / orange3 / Orange / preprocess / normalize.py View on Github external
def normalize_by_sd(self, dist, var):
        avg, sd = (dist.mean(), dist.standard_deviation()) if dist.size else (0, 1)
        if sd == 0:
            sd = 1
        return ContinuousVariable(
            var.name, compute_value=Norm(var, avg, 1 / sd), sparse=var.sparse
        )