Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# parser.add_argument('-evalp', '--evalp',
# help='evaluation period', default=1)
# parser.add_argument('-an', '--addName',
# help='An add name for the save folder', default='')
# parser.add_argument('-eb', '--eval_batch', help='Evaluation Batch_size',
# type=int, default=0)
args = parser.parse_args()
DOMAINS = {"attraction": 0, "restaurant": 1, "taxi": 2, "train": 3, "hotel": 4}
if not os.path.exists(args.data_dir):
raise ValueError(f'Data not found at {args.data_dir}')
work_dir = f'{args.work_dir}/{args.dataset_name.upper()}'
nf = nemo.core.NeuralModuleFactory(backend=nemo.core.Backend.PyTorch,
local_rank=args.local_rank,
optimization_level=args.amp_opt_level,
log_dir=work_dir,
create_tb_writer=True,
files_to_copy=[__file__],
add_time_to_log_dir=True)
data_layer = nemo_nlp.WOZDSTDataLayer(args.data_dir,
DOMAINS,
batch_size=args.batch_size,
mode='train')
src_ids, src_lens, tgt_ids, tgt_lens, gate_labels, turn_domain = data_layer()
vocab_size = len(data_layer._dataset.vocab)
steps_per_epoch = len(data_layer) // args.batch_size
encoder = EncoderRNN(vocab_size,
opt_level)
name = construct_name('Jasper10x5', lr, batch_size, num_gpus, num_epochs,
weight_decay)
tb_writer = SummaryWriter(name)
if args.local_rank is not None:
device = nemo.core.DeviceType.AllGpu
print('Doing ALL GPU')
else:
device = nemo.core.DeviceType.GPU
# instantiate Neural Factory with supported backend
neural_factory = nemo.core.NeuralModuleFactory(
backend=nemo.core.Backend.PyTorch,
local_rank=args.local_rank,
optimization_level=opt_level,
placement=device)
jasper_model_definition = toml.load("../../examples/nemo_asr/jasper10x5.toml")
jasper_model_definition['placement'] = device
labels = jasper_model_definition['labels']['labels']
train_manifest = "/mnt/D1/Data/librispeech/librivox-train-all.json"
#train_manifest = args.train_manifest
val_manifest1 = "/mnt/D1/Data/librispeech/librivox-dev-clean.json"
# val_manifest2 = "/mnt/D1/Data/librispeech/librivox-dev-other.json"
#val_manifest1 = args.val_manifest1
featurizer_config = jasper_model_definition['input']
from .tacotron2_modules import (MakeGate, Tacotron2Loss, Tacotron2Postnet,
Tacotron2Decoder, Tacotron2DecoderInfer,
Tacotron2Encoder, TextEmbedding)
from .waveglow_modules import WaveGlowNM, WaveGlowInferNM, WaveGlowLoss
from .data_layers import AudioDataLayer
from .parts.helpers import (waveglow_log_to_tb_func,
waveglow_process_eval_batch,
waveglow_eval_log_to_tb_func,
tacotron2_log_to_tb_func,
tacotron2_process_eval_batch,
tacotron2_process_final_eval,
tacotron2_eval_log_to_tb_func)
name = "nemo_tts"
backend = Backend.PyTorch
__version__ = "0.9.0"
type=str)
parser.add_argument("--dataset_name", default='snips-all', type=str)
parser.add_argument("--data_dir",
default='data/nlu/snips',
type=str)
parser.add_argument("--query", default='please turn on the light', type=str)
parser.add_argument("--work_dir",
default='outputs/SNIPS-ALL/20191010-164934/checkpoints',
type=str)
parser.add_argument("--amp_opt_level", default="O0",
type=str, choices=["O0", "O1", "O2"])
parser.add_argument("--do_lower_case", action='store_false')
args = parser.parse_args()
nf = nemo.core.NeuralModuleFactory(backend=nemo.core.Backend.PyTorch,
optimization_level=args.amp_opt_level,
log_dir=None)
""" Load the pretrained BERT parameters
See the list of pretrained models, call:
nemo_nlp.huggingface.BERT.list_pretrained_models()
"""
pretrained_bert_model = nemo_nlp.huggingface.BERT(
pretrained_model_name=args.pretrained_bert_model, factory=nf)
tokenizer = BertTokenizer.from_pretrained(args.pretrained_bert_model)
hidden_size = pretrained_bert_model.local_parameters["hidden_size"]
data_desc = JointIntentSlotDataDesc(args.data_dir,
args.do_lower_case,
args.dataset_name)
learning_rate = args.learning_rate
max_steps = args.max_steps
weight_decay = args.weight_decay
momentum = args.momentum
num_gpus = args.num_gpus
if args.tb_folder is None:
tb_folder = 'resnet50_fp32'
else:
tb_folder = args.tb_folder
tb_writer = SummaryWriter(tb_folder)
# instantiate Neural Factory with supported backend
neural_factory = nemo.core.NeuralModuleFactory(
backend=nemo.core.Backend.PyTorch,
local_rank=args.local_rank,
# Set this to nemo.core.Optimization.mxprO1
# if you have Volta or Turing GPU
optimization_level=nemo.core.Optimization.mxprO0)
resnet = neural_factory.get_module(name="resnet50",
params={"placement": device},
collection="torchvision",
pretrained=False)
dl_train = neural_factory.get_module(
name="ImageFolderDataLayer", collection="torchvision",
params={"batch_size": batch_size,
"input_size": resnet.input_ports["x"].axis2type[2].dim,
"shuffle": True,
"path": args.data_root + "train",
'-1' - step checkpoint won't be saved")
parser.add_argument("--save_step_freq", default=200, type=int,
help="Frequency of saving checkpoint \
'-1' - step checkpoint won't be saved")
parser.add_argument("--loss_step_freq", default=250, type=int,
help="Frequency of printing loss")
parser.add_argument("--use_weighted_loss_punct", action='store_true',
help="Flag to indicate whether to use weighted loss \
to mitigate classs unbalancing for the punctuation task")
args = parser.parse_args()
if not os.path.exists(args.data_dir):
raise FileNotFoundError("Dataset not found.")
nf = nemo.core.NeuralModuleFactory(backend=nemo.core.Backend.PyTorch,
local_rank=args.local_rank,
optimization_level=args.amp_opt_level,
log_dir=args.work_dir,
create_tb_writer=True,
files_to_copy=[__file__],
add_time_to_log_dir=True)
nf.logger.info(args)
output_file = f'{nf.work_dir}/output.txt'
if args.bert_checkpoint is None:
""" Use this if you're using a standard BERT model.
To see the list of pretrained models, call:
nemo_nlp.huggingface.BERT.list_pretrained_models()
"""
"attn_model": 'dot',
"hidden_size": 512,
"encoder_n_layers": 2,
"decoder_n_layers": 2,
"dropout": 0.1,
"voc_size": 6104 + 3,
"batch_size": 128,
"num_epochs": 15,
"optimizer_kind": "adam",
"learning_rate": 0.0003,
"tb_log_dir": "ChatBot",
}
# instantiate Neural Factory with supported backend
neural_factory = nemo.core.NeuralModuleFactory(
backend=nemo.core.Backend.PyTorch,
local_rank=None)
# instantiate necessary neural modules
dl = neural_factory.get_module(
name="DialogDataLayer", collection="tutorials",
params=config)
# Instance one on EncoderRNN
encoder1 = neural_factory.get_module(
name="EncoderRNN", collection="tutorials",
params=config)
# Instance two on EncoderRNN. It will have different weights from instance one
encoder2 = neural_factory.get_module(
name="EncoderRNN", collection="tutorials",
params=config)
mixer = neural_factory.get_module(
type=str)
parser.add_argument("--data_dir", default='data/sc/aclImdb', type=str)
parser.add_argument("--dataset_name", default='imdb', type=str)
parser.add_argument("--work_dir", default='outputs', type=str)
parser.add_argument("--save_epoch_freq", default=1, type=int)
parser.add_argument("--save_step_freq", default=-1, type=int)
parser.add_argument("--optimizer_kind", default="adam", type=str)
parser.add_argument("--amp_opt_level", default="O0",
type=str, choices=["O0", "O1", "O2"])
parser.add_argument("--do_lower_case", action='store_false')
parser.add_argument("--shuffle_data", action='store_false')
args = parser.parse_args()
work_dir = f'{args.work_dir}/{args.dataset_name.upper()}'
nf = nemo.core.NeuralModuleFactory(backend=nemo.core.Backend.PyTorch,
local_rank=args.local_rank,
optimization_level=args.amp_opt_level,
log_dir=work_dir,
create_tb_writer=True,
files_to_copy=[__file__],
add_time_to_log_dir=True)
""" Load the pretrained BERT parameters
See the list of pretrained models, call:
nemo_nlp.huggingface.BERT.list_pretrained_models()
"""
pretrained_bert_model = nemo_nlp.huggingface.BERT(
pretrained_model_name=args.pretrained_bert_model, factory=nf)
hidden_size = pretrained_bert_model.local_parameters["hidden_size"]
tokenizer = BertTokenizer.from_pretrained(args.pretrained_bert_model)
args = parse_args()
name = construct_name(
args.exp_name,
args.lr,
args.batch_size,
args.num_epochs,
args.weight_decay,
args.optimizer)
work_dir = name
if args.work_dir:
work_dir = os.path.join(args.work_dir, name)
# instantiate Neural Factory with supported backend
neural_factory = nemo.core.NeuralModuleFactory(
backend=nemo.core.Backend.PyTorch,
local_rank=args.local_rank,
optimization_level=args.amp_opt_level,
log_dir=work_dir,
checkpoint_dir=args.checkpoint_dir,
create_tb_writer=args.create_tb_writer,
files_to_copy=[args.model_config, __file__],
cudnn_benchmark=args.cudnn_benchmark,
tensorboard_dir=args.tensorboard_dir)
args.num_gpus = neural_factory.world_size
logger = neural_factory.logger
args.checkpoint_dir = neural_factory.checkpoint_dir
if args.local_rank is not None:
logger.info('Doing ALL GPU')
name = construct_name(
args.exp_name,
args.lr,
args.batch_size,
args.max_steps,
args.num_epochs,
args.weight_decay,
args.optimizer,
args.iter_per_step)
log_dir = name
if args.work_dir:
log_dir = os.path.join(args.work_dir, name)
# instantiate Neural Factory with supported backend
neural_factory = nemo.core.NeuralModuleFactory(
backend=nemo.core.Backend.PyTorch,
local_rank=args.local_rank,
optimization_level=args.amp_opt_level,
log_dir=log_dir,
checkpoint_dir=args.checkpoint_dir,
create_tb_writer=args.create_tb_writer,
files_to_copy=[args.model_config, __file__],
cudnn_benchmark=args.cudnn_benchmark,
tensorboard_dir=args.tensorboard_dir)
args.num_gpus = neural_factory.world_size
logger = neural_factory.logger
checkpoint_dir = neural_factory.checkpoint_dir
if args.local_rank is not None:
logger.info('Doing ALL GPU')
# build dags