Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_united_hodograph_range():
"""Tests making a hodograph with a united ranged."""
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(1, 1, 1)
Hodograph(ax, component_range=60. * units.knots)
df = pd.read_fwf(get_test_data('nov11_sounding.txt', as_file_obj=False),
skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names)
# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'
), how='all').reset_index(drop=True)
##########################################################################
# We will pull the data out of the example dataset into individual variables and
# assign units.
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.wind_components(wind_speed, wind_dir)
##########################################################################
# Thermodynamic Calculations
# --------------------------
#
# Often times we will want to calculate some thermodynamic parameters of a
# sounding. The MetPy calc module has many such calculations already implemented!
#
# * **Lifting Condensation Level (LCL)** - The level at which an air parcel's
# relative humidity becomes 100% when lifted along a dry adiabatic path.
# * **Parcel Path** - Path followed by a hypothetical parcel of air, beginning
# at the surface temperature/pressure and rising dry adiabatically until
# reaching the LCL, then rising moist adiabatially.
def plot_skewt(df):
# We will pull the data out of the example dataset into individual variables
# and assign units.
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.wind_components(wind_speed, wind_dir)
# Create a new figure. The dimensions here give a good aspect ratio.
fig = plt.figure(figsize=(9, 9))
add_metpy_logo(fig, 115, 100)
skew = SkewT(fig, rotation=45)
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-40, 60)
df['u_wind'], df['v_wind'] = mpcalc.wind_components(df['speed'],
np.deg2rad(df['direction']))
# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed',
'u_wind', 'v_wind'), how='all').reset_index(drop=True)
###########################################
# We will pull the data out of the example dataset into individual variables and
# assign units.
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.wind_components(wind_speed, wind_dir)
###########################################
# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
add_metpy_logo(fig, 630, 80, size='large')
# Grid for plots
gs = gridspec.GridSpec(3, 3)
skew = SkewT(fig, rotation=45, subplot=gs[:, :2])
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False),
skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names)
# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'), how='all'
).reset_index(drop=True)
###########################################
# We will pull the data out of the example dataset into individual variables and
# assign units.
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.wind_components(wind_speed, wind_dir)
###########################################
# Create a new figure. The dimensions here give a good aspect ratio.
fig = plt.figure(figsize=(9, 9))
add_metpy_logo(fig, 115, 100)
skew = SkewT(fig, rotation=45)
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot.
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)
skew.ax.set_ylim(1000, 100)
df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False),
skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names)
# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'
), how='all').reset_index(drop=True)
###########################################
# We will pull the data out of the example dataset into individual variables and
# assign units.
hght = df['height'].values * units.hPa
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.wind_components(wind_speed, wind_dir)
###########################################
# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
add_metpy_logo(fig, 115, 100)
# Grid for plots
skew = SkewT(fig, rotation=45)
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
df['u_wind'], df['v_wind'] = mpcalc.get_wind_components(df['speed'],
np.deg2rad(df['direction']))
# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed',
'u_wind', 'v_wind'), how='all').reset_index(drop=True)
##########################################################################
# We will pull the data out of the example dataset into individual variables and
# assign units.
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.get_wind_components(wind_speed, wind_dir)
##########################################################################
# Thermodynamic Calculations
# --------------------------
#
# Often times we will want to calculate some thermodynamic parameters of a
# sounding. The MetPy calc module has many such calculations already implemented!
#
# * **Lifting Condensation Level (LCL)** - The level at which an air parcel's
# relative humidity becomes 100% when lifted along a dry adiabatic path.
# * **Parcel Path** - Path followed by a hypothetical parcel of air, beginning
# at the surface temperature/pressure and rising dry adiabatically until
# reaching the LCL, then rising moist adiabatially.
df['u_wind'], df['v_wind'] = mpcalc.get_wind_components(df['speed'],
np.deg2rad(df['direction']))
# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed',
'u_wind', 'v_wind'), how='all').reset_index(drop=True)
###########################################
# We will pull the data out of the example dataset into individual variables and
# assign units.
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.get_wind_components(wind_speed, wind_dir)
###########################################
# Create a new figure. The dimensions here give a good aspect ratio.
fig = plt.figure(figsize=(9, 9))
add_metpy_logo(fig, 115, 100)
skew = SkewT(fig, rotation=45)
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)
skew.ax.set_ylim(1000, 100)
df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False),
skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names)
# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'
), how='all').reset_index(drop=True)
###########################################
# We will pull the data out of the example dataset into individual variables and
# assign units.
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.wind_components(wind_speed, wind_dir)
###########################################
# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
add_metpy_logo(fig, 630, 80, size='large')
# Grid for plots
gs = gridspec.GridSpec(3, 3)
skew = SkewT(fig, rotation=45, subplot=gs[:, :2])
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')