Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
return scoreIfHas;
}
return 1;
};
const rules = ruleset(
// Isolate the actual blog post body text. Based on Fathom's example
// Readability rules
rule(dom('p,li,ol,ul,code,blockquote,pre,h1,h2,h3,h4,h5,h6'),
props(scoreByLength).type('paragraphish')),
rule(type('paragraphish'), score(byInverseLinkDensity)),
rule(dom('p'), score(4.5).type('paragraphish')),
// Tweaks for this particular blog
rule(type('paragraphish'), score(hasAncestor('article', 10))),
rule(dom('.entry-summary p'), score(0).type('paragraphish')),
rule(dom('figure'), props(scoreByImageSize).type('paragraphish')),
// Find the best cluster of paragraph-ish nodes
rule(
type('paragraphish').bestCluster({
splittingDistance: 3,
differentDepthCost: 6.5,
differentTagCost: 2,
sameTagCost: 0.5,
strideCost: 0,
}),
out('content').allThrough(Futils.domSort)));
async function ingestArticle(hatch, {title, link, date, author}) {
let $ = await Libingester.util.fetch_html(link);
const baseURI = Libingester.util.get_doc_base_uri($, link);
// Initial tests of this are pretty innaccurate; lots to learn to be able to tweak the rules and use it well
const rules = ruleset(
rule(
dom('p,div,li,blockquote,h1,h2,h3,h4,h5,h6'),
props(scoreByLength).type('paragraphish'),
),
rule(
type('paragraphish'),
score(fnode => {
const paragraphishNote = fnode.noteFor('paragraphish')
return paragraphishNote
? (1 - linkDensity(fnode, paragraphishNote.inlineLength)) * 1.5
: (1 - linkDensity(fnode)) * 1.5
}),
),
rule(dom('p'), score(4.5).type('paragraphish')),
rule(
type('paragraphish').bestCluster({
splittingDistance: 3,
differentDepthCost: 6.5,
differentTagCost: 2,
sameTagCost: 0.5,
strideCost: 0,
}),
out('content').allThrough(domSort),
),
)
export default rules
const cMax = Math.max(r, g, b);
const cMin = Math.min(r, g, b);
const delta = cMax - cMin;
const lightness = (cMax + cMin) / 2;
const denom = (1 - (Math.abs(2 * lightness - 1)));
// Return 0 if it's black (R, G, and B all 0).
return (denom === 0) ? 0 : delta / denom;
}
/* The actual ruleset */
const rules = ruleset([
rule(dom('div'), type('overlay')),
rule(type('overlay'), score(big), {name: 'big'}),
rule(type('overlay'), score(nearlyOpaque), {name: 'nearlyOpaque'}),
rule(type('overlay'), score(monochrome), {name: 'monochrome'}),
rule(type('overlay'), score(suspiciousClassOrId), {name: 'classOrId'}),
rule(type('overlay'), score(visible), {name: 'visible'}),
rule(type('overlay').max(), out('overlay'))
]);
return rules;
}
}
} from 'fathom-web'
import { inlineTextLength, linkDensity } from 'fathom-web/utils'
/**
* @param {fnode} fnode
* @return {any} Object containing a `score` key derived from the element's text length
*/
const scoreByLength = ({ element }) => ({
score: inlineTextLength(element),
})
// Based on: https://hacks.mozilla.org/2017/04/fathom-a-framework-for-understanding-web-pages/
// Meant to be similar to Readability-like extraction of a page's main-content
// Initial tests of this are pretty innaccurate; lots to learn to be able to tweak the rules and use it well
const rules = ruleset(
rule(
dom('p,div,li,blockquote,h1,h2,h3,h4,h5,h6'),
props(scoreByLength).type('paragraphish'),
),
rule(
type('paragraphish'),
score(fnode => {
const paragraphishNote = fnode.noteFor('paragraphish')
return paragraphishNote
? (1 - linkDensity(fnode, paragraphishNote.inlineLength)) * 1.5
: (1 - linkDensity(fnode)) * 1.5
}),
),
rule(dom('p'), score(4.5).type('paragraphish')),
rule(
type('paragraphish').bestCluster({
splittingDistance: 3,
* @param {fnode} fnode
* @return {any} Object containing a `score` key derived from the element's text length
*/
const scoreByLength = ({ element }) => ({
score: inlineTextLength(element),
})
// Based on: https://hacks.mozilla.org/2017/04/fathom-a-framework-for-understanding-web-pages/
// Meant to be similar to Readability-like extraction of a page's main-content
// Initial tests of this are pretty innaccurate; lots to learn to be able to tweak the rules and use it well
const rules = ruleset(
rule(
dom('p,div,li,blockquote,h1,h2,h3,h4,h5,h6'),
props(scoreByLength).type('paragraphish'),
),
rule(
type('paragraphish'),
score(fnode => {
const paragraphishNote = fnode.noteFor('paragraphish')
return paragraphishNote
? (1 - linkDensity(fnode, paragraphishNote.inlineLength)) * 1.5
: (1 - linkDensity(fnode)) * 1.5
}),
),
rule(dom('p'), score(4.5).type('paragraphish')),
rule(
type('paragraphish').bestCluster({
splittingDistance: 3,
differentDepthCost: 6.5,
differentTagCost: 2,
sameTagCost: 0.5,
strideCost: 0,
}
return 1;
};
const rules = ruleset(
// Isolate the actual blog post body text. Based on Fathom's example
// Readability rules
rule(dom('p,li,ol,ul,code,blockquote,pre,h1,h2,h3,h4,h5,h6'),
props(scoreByLength).type('paragraphish')),
rule(type('paragraphish'), score(byInverseLinkDensity)),
rule(dom('p'), score(4.5).type('paragraphish')),
// Tweaks for this particular blog
rule(type('paragraphish'), score(hasAncestor('article', 10))),
rule(dom('.entry-summary p'), score(0).type('paragraphish')),
rule(dom('figure'), props(scoreByImageSize).type('paragraphish')),
// Find the best cluster of paragraph-ish nodes
rule(
type('paragraphish').bestCluster({
splittingDistance: 3,
differentDepthCost: 6.5,
differentTagCost: 2,
sameTagCost: 0.5,
strideCost: 0,
}),
out('content').allThrough(Futils.domSort)));
async function ingestArticle(hatch, {title, link, date, author}) {
let $ = await Libingester.util.fetch_html(link);
const baseURI = Libingester.util.get_doc_base_uri($, link);
/**
* Title rules
*/
// consider all eligible h1 elements
rule(dom('h1').when(this.isEligibleTitle.bind(this)), type('title')),
// better score based on y-axis proximity to max scoring image element
rule(type('title'), score(this.isNearImageTopOrBottom.bind(this)), {name: 'isNearImageTopOrBottom'}),
// return title element(s) with max score
rule(type('title').max(), out('title')),
/**
* Price rules
*/
// 72% by itself, at [4, 4, 4, 4...]!:
// consider all eligible span and h2 elements
rule(dom('span, h2').when(this.isEligiblePrice.bind(this)), type('price')),
// check if the element has a '$' in its innerText
rule(type('price'), score(this.hasDollarSign.bind(this)), {name: 'hasDollarSign'}),
// better score the closer the element is to the top of the page
rule(type('price'), score(this.isAboveTheFold.bind(this)), {name: 'isAboveTheFoldPrice'}),
// check if the id has "price" in it
rule(type('price'), score(this.hasPriceInID.bind(this)), {name: 'hasPriceInID'}),
rule(type('price'), score(this.hasPriceInParentID.bind(this)), {name: 'hasPriceInParentID'}),
// check if any class names have "price" in them
rule(type('price'), score(this.hasPriceInClassName.bind(this)), {name: 'hasPriceInClassName'}),
rule(type('price'), score(this.hasPriceInParentClassName.bind(this)), {name: 'hasPriceInParentClassName'}),
// better score for larger font size
rule(type('price'), score(this.fontIsBig.bind(this)), {name: 'fontIsBig'}),
// better score based on x-axis proximity to max scoring image element
rule(type('price'), score(this.isNearImage.bind(this)), {name: 'isNearImage'}),
// check if innerText has a price pattern
rule(type('price'), score(this.hasPriceishPattern.bind(this)), {name: 'hasPriceishPattern'}),
/**
* Price rules
*/
// 72% by itself, at [4, 4, 4, 4...]!:
// consider all eligible span and h2 elements
rule(dom('span, h2').when(this.isEligiblePrice.bind(this)), type('price')),
// check if the element has a '$' in its innerText
rule(type('price'), score(this.hasDollarSign.bind(this)), {name: 'hasDollarSign'}),
// better score the closer the element is to the top of the page
rule(type('price'), score(this.isAboveTheFold.bind(this)), {name: 'isAboveTheFoldPrice'}),
// check if the id has "price" in it
rule(type('price'), score(this.hasPriceInID.bind(this)), {name: 'hasPriceInID'}),
rule(type('price'), score(this.hasPriceInParentID.bind(this)), {name: 'hasPriceInParentID'}),
// check if any class names have "price" in them
rule(type('price'), score(this.hasPriceInClassName.bind(this)), {name: 'hasPriceInClassName'}),
rule(type('price'), score(this.hasPriceInParentClassName.bind(this)), {name: 'hasPriceInParentClassName'}),
// better score for larger font size
rule(type('price'), score(this.fontIsBig.bind(this)), {name: 'fontIsBig'}),
// better score based on x-axis proximity to max scoring image element
rule(type('price'), score(this.isNearImage.bind(this)), {name: 'isNearImage'}),
// check if innerText has a price pattern
rule(type('price'), score(this.hasPriceishPattern.bind(this)), {name: 'hasPriceishPattern'}),
// return price element(s) with max score
rule(type('price').max(), out('price')),
],
coeffs,
biases);
}
}
return 1;
};
const rules = ruleset(
// Isolate the actual blog post body text. Based on Fathom's example
// Readability rules
rule(dom('p,li,ol,ul,code,blockquote,pre,h1,h2,h3,h4,h5,h6'),
props(scoreByLength).type('paragraphish')),
rule(type('paragraphish'), score(byInverseLinkDensity)),
rule(dom('p'), score(4.5).type('paragraphish')),
// Tweaks for this particular blog
rule(type('paragraphish'), score(hasAncestor('article', 10))),
rule(dom('.entry-summary p'), score(0).type('paragraphish')),
rule(dom('figure'), props(scoreByImageSize).type('paragraphish')),
rule(dom('.jetpack-video-wrapper'), props(() => ({
score: 100,
note: {length: 1},
})).type('paragraphish')),
// Find the best cluster of paragraph-ish nodes
rule(
type('paragraphish').bestCluster({
splittingDistance: 3,
differentDepthCost: 6.5,
differentTagCost: 2,
sameTagCost: 0.5,
strideCost: 0,
}),
out('content').allThrough(Futils.domSort)));
async function ingestArticle(hatch, {title, link, date, author}) {
props(scoreByLength).type('paragraphish')),
rule(type('paragraphish'), score(byInverseLinkDensity)),
rule(dom('p'), score(4.5).type('paragraphish')),
// Tweaks for this particular blog
rule(type('paragraphish'), score(hasAncestor('article', 10))),
rule(dom('.entry-summary p'), score(0).type('paragraphish')),
rule(dom('figure'), props(scoreByImageSize).type('paragraphish')),
rule(dom('.jetpack-video-wrapper'), props(() => ({
score: 100,
note: {length: 1},
})).type('paragraphish')),
// Find the best cluster of paragraph-ish nodes
rule(
type('paragraphish').bestCluster({
splittingDistance: 3,
differentDepthCost: 6.5,
differentTagCost: 2,
sameTagCost: 0.5,
strideCost: 0,
}),
out('content').allThrough(Futils.domSort)));
async function ingestArticle(hatch, {title, link, date, author}) {
let $ = await Libingester.util.fetch_html(link);
const baseURI = Libingester.util.get_doc_base_uri($, link);
const imageURI = $('meta[property="og:image"]').attr('content');
const synopsis = $('meta[property="og:description"]').attr('content');
const lastModified = $('meta[property="article:modified_time"]')
.attr('content');