Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
export function parseTextForTopics(text) {
// return(nlp(text).topics().out('topk'));
return(nlp(text).topics().slice(0, 30).out('frequency'));
}
validContributionTypes.forEach(type => {
Contributions[type] = 'Contribution'
})
Object.keys(contributionTypeMappings).forEach(type => {
Contributions[`${type}`] = 'Contribution'
})
const plugin = {
words: {
...Contributions,
add: 'Action',
},
}
nlp.plugin(plugin)
function parseAddComment(message, action) {
const whoMatched = nlp(message)
.match(`${action} [.]`)
.normalize({
whitespace: true, // remove hyphens, newlines, and force one space between words
case: false, // keep only first-word, and 'entity' titlecasing
numbers: false, // turn 'seven' to '7'
punctuation: true, // remove commas, semicolons - but keep sentence-ending punctuation
unicode: false, // visually romanize/anglicize 'Björk' into 'Bjork'.
contractions: false, // turn "isn't" to "is not"
acronyms: false, //remove periods from acronyms, like 'F.B.I.'
parentheses: false, //remove words inside brackets (like these)
possessives: false, // turn "Google's tax return" to "Google tax return"
plurals: false, // turn "batmobiles" into "batmobile"
verbs: false, // turn all verbs into Infinitive form - "I walked" → "I walk"
export function normalizeText(text) {
return (nlp(text).normalize());
}
shared_text: {
position: 'absolute',
top: 0,
left: 0,
width: '100%',
fontFamily: 'Helvetica',
fontSize: 20,
padding: '10px 15px 0px 15px',
margin: 0,
color: 'grey'
}
}
this.state = {
text: props.text,
trailing: '',
parsed: nlp(props.text)
}
this.overlay = this.overlay.bind(this)
this.onChange = this.onChange.bind(this)
this.hiddenText = this.hiddenText.bind(this)
}
export function parseTextForDates(text) {
return(nlp('text').dates().slice(0, 50).out('frequency'));
}
export function parseTextForPlaces(text) {
return(nlp(text).places().slice(0, 50).out('frequency'));
}
export function parseTextForTrigrams(text) {
return(nlp(text).ngrams().trigrams().slice(0, 30).out('frequency'));
}
onChange() {
let {state} = this
let el = this.refs.textarea
if (el) {
state.text = el.value
state.parsed = nlp(state.text)
}
state.trailing = state.text.match(/\s+$/) || ''
this.setState(state)
}
export function parseTextForTerms(text) {
return(filterCommonWords(nlp(text).terms().slice(0, 30).out('frequency')));
}
export function parseTextForBigrams(text) {
return(nlp(text).ngrams().bigrams().slice(0, 30).out('frequency'));
}