Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
const optimizer = tf.train.adam(args.learningRate, args.adamBeta1);
const combined = buildCombinedModel(
args.latentSize, generator, discriminator, optimizer);
await data.loadData();
let {images: xTrain, labels: yTrain} = data.getTrainData();
yTrain = tf.expandDims(yTrain.argMax(-1), -1);
// Save the generator model once before starting the training.
await generator.save(saveURL);
let numTensors;
let logWriter;
if (args.logDir) {
console.log(`Logging to tensorboard at logdir: ${args.logDir}`);
logWriter = tf.node.summaryFileWriter(args.logDir);
}
let step = 0;
for (let epoch = 0; epoch < args.epochs; ++epoch) {
// Write some metadata to disk at the beginning of every epoch.
fs.writeFileSync(
metadataPath,
JSON.stringify(makeMetadata(args.epochs, epoch, false)));
const tBatchBegin = tf.util.now();
const numBatches = Math.ceil(xTrain.shape[0] / args.batchSize);
for (let batch = 0; batch < numBatches; ++batch) {
const actualBatchSize = (batch + 1) * args.batchSize >= xTrain.shape[0] ?
(xTrain.shape[0] - batch * args.batchSize) :