How to use the @nlpjs/similarity.similarity function in @nlpjs/similarity

To help you get started, we’ve selected a few @nlpjs/similarity examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github axa-group / nlp.js / packages / ner / src / extractor-enum.js View on Github external
getBestSubstringList(str1, str2, words1, threshold = 1) {
    const str1len = str1.length;
    const str2len = str2.length;
    const result = [];
    if (str1len <= str2len) {
      const levenshtein = similarity(str1, str2, true);
      const accuracy = (str2len - levenshtein) / str2len;
      if (accuracy >= threshold) {
        result.push({
          start: 0,
          end: str1len - 1,
          len: str1len,
          levenshtein,
          accuracy,
        });
      }
      return result;
    }
    const maxLevenshtein = str2len * (1 - threshold);
    const wordPositions = words1 || this.getWordPositions(str1);
    const wordPositionsLen = wordPositions.length;
    for (let i = 0; i < wordPositionsLen; i += 1) {
github axa-group / nlp.js / packages / ner / src / extractor-enum.js View on Github external
levenshtein,
          accuracy,
        });
      }
      return result;
    }
    const maxLevenshtein = str2len * (1 - threshold);
    const wordPositions = words1 || this.getWordPositions(str1);
    const wordPositionsLen = wordPositions.length;
    for (let i = 0; i < wordPositionsLen; i += 1) {
      for (let j = i; j < wordPositionsLen; j += 1) {
        const str3 = str1.substring(
          wordPositions[i].start,
          wordPositions[j].end + 1
        );
        const levenshtein = similarity(str3, str2, true);
        const accuracy = (str2len - levenshtein) / str2len;
        if (accuracy >= threshold) {
          result.push({
            start: wordPositions[i].start,
            end: wordPositions[j].end,
            len: wordPositions[j].end - wordPositions[i].start + 1,
            levenshtein,
            accuracy,
          });
        }
        if (
          str3.length - wordPositions[0].len >=
          str2.length + maxLevenshtein
        ) {
          break;
        }
github axa-group / nlp.js / packages / ner / src / extractor-enum.js View on Github external
getBestSubstring(str1, str2, words1) {
    const str1len = str1.length;
    const str2len = str2.length;
    if (str1len <= str2len) {
      const result = {
        start: 0,
        end: str1len - 1,
        len: str1len,
        levenshtein: similarity(str1, str2, true),
      };
      result.accuracy = (str2len - result.levenshtein) / str2len;
      return result;
    }
    const wordPositions = words1 || this.getWordPositions(str1);
    const wordPositionsLen = wordPositions.length;
    const best = {
      start: 0,
      end: 0,
      len: 0,
      levenshtein: undefined,
      accuracy: 0,
    };
    for (let i = 0; i < wordPositionsLen; i += 1) {
      for (let j = i; j < wordPositionsLen; j += 1) {
        const str3 = str1.substring(
github axa-group / nlp.js / packages / ner / src / extractor-enum.js View on Github external
const wordPositions = words1 || this.getWordPositions(str1);
    const wordPositionsLen = wordPositions.length;
    const best = {
      start: 0,
      end: 0,
      len: 0,
      levenshtein: undefined,
      accuracy: 0,
    };
    for (let i = 0; i < wordPositionsLen; i += 1) {
      for (let j = i; j < wordPositionsLen; j += 1) {
        const str3 = str1.substring(
          wordPositions[i].start,
          wordPositions[j].end + 1
        );
        const levenshtein = similarity(str3, str2, true);
        if (best.levenshtein === undefined || levenshtein < best.levenshtein) {
          best.levenshtein = levenshtein;
          best.start = wordPositions[i].start;
          best.end = wordPositions[j].end;
          best.len = best.end - best.start + 1;
        }
      }
    }
    best.accuracy = (str2len - best.levenshtein) / str2len;
    return best;
  }

@nlpjs/similarity

Similarity

MIT
Latest version published 2 years ago

Package Health Score

65 / 100
Full package analysis

Similar packages