Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
) {
// [START automl_vision_object_detection_list_models]
/**
* Demonstrates using the AutoML client to list all models.
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const filter_ = '[FILTER_EXPRESSIONS]'
// e.g., "imageObjectDetectionModelMetadata:*";
//Imports the Google Cloud Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function listModels() {
// A resource that represents Google Cloud Platform location.
const projectLocation = automlClient.locationPath(projectId, computeRegion);
// List all the models available in the region by applying filter.
const [response] = await automlClient.listModels({
parent: projectLocation,
filter: filter,
});
console.log(`List of models:`);
for (const model of response) {
console.log(`\nModel name: ${model.name}`);
console.log(`Model Id: ${model.name.split(`/`).pop(-1)}`);
console.log(`Model display name: ${model.displayName}`);
console.log(`Dataset Id: ${model.datasetId}`);
) {
// [START automl_vision_object_detection_list_datasets]
/**
* Demonstrates using the AutoML client to list all Datasets.
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const filter_ = '[FILTER_EXPRESSIONS]'
// e.g., "imageObjectDetectionDatasetMetadata:*";
//Imports the Google Cloud Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
const util = require(`util`);
async function listDatasets() {
const projectLocation = automlClient.locationPath(projectId, computeRegion);
// List all the datasets available in the region by applying filter.
const [response] = await automlClient.listDatasets({
parent: projectLocation,
filter: filter,
});
console.log('List of datasets:');
for (const dataset of response) {
console.log(`\nDataset name: ${dataset.name}`);
console.log(`Dataset Id: ${dataset.name.split(`/`).pop(-1)}`);
console.log(`Dataset display name: ${dataset.displayName}`);
console.log(`Dataset example count: ${dataset.exampleCount}`);
datasetId = 'YOUR_DATASET_ID'
) {
// [START automl_vision_object_detection_get_dataset]
/**
* Demonstrates using the AutoML client to get a dataset by ID.
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const datasetId = '[DATASET_ID]' e.g.,"IOD34216801856389120";
//Imports the Google Cloud Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
const util = require(`util`);
async function getDataset() {
// Get the full path of the dataset.
const datasetFullId = automlClient.datasetPath(
projectId,
computeRegion,
datasetId
);
// Get a dataset.
const [response] = await automlClient.getDataset({name: datasetFullId});
console.log(`Got dataset: ${response.name}`);
console.log(`Dataset Id: ${response.name.split(`/`).pop(-1)}`);
console.log(`Dataset display name: ${response.displayName}`);
console.log(`Dataset example count: ${response.exampleCount}`);
console.log(
/**
* Demonstrates using the AutoML client to display model evaluation.
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const modelId = '[MODEL_ID]' e.g., "IOD2122286140026257408";
// const filter = '[FILTER_EXPRESSIONS]'
// e.g., "imageObjectDetectionModelMetadata:*";
const math = require(`mathjs`);
//Imports the Google Cloud Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
// Get the full path of the model.
const modelFullId = automlClient.modelPath(projectId, computeRegion, modelId);
// List all the model evaluations in the model by applying filter.
automlClient
.listModelEvaluations({parent: modelFullId, filter: filter})
.then(respond => {
const response = respond[0];
// Iterate through the results.
let modelEvaluationId = ``;
for (const element of response) {
// There is evaluation for each class in a model and for overall model.
// Get only the evaluation of overall model.
if (!element.annotationSpecId) {
modelEvaluationId = element.name.split(`/`).pop(-1);
) {
// [START automl_vision_object_detection_import_data]
/**
* Demonstrates using the AutoML client to import labeled items.
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const datasetId = '[DATASET_ID]' e.g.,"IOD34216801856389120";
// const gcsPath = '[GCS_PATH]' e.g., "gs:///",
// `.csv paths in AutoML Vision Object Detection CSV format`;
//Imports the Google Cloud Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function importData() {
// Get the full path of the dataset.
const datasetFullId = automlClient.datasetPath(
projectId,
computeRegion,
datasetId
);
// Get the multiple Google Cloud Storage URIs.
const inputUris = gcsPath.split(`,`);
const inputConfig = {
gcsSource: {
inputUris: inputUris,
},
};
modelId = 'YOUR_MODEL_ID'
) {
// [START automl_vision_object_detection_delete_model]
/**
* Demonstrates using the AutoML client to delete a model.
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const modelId = '[MODEL_ID]' e.g., "IOD1187015161160925184";
//Imports the Google Cloud Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function deleteModel() {
// Get the full path of the model.
const modelFullId = automlClient.modelPath(
projectId,
computeRegion,
modelId
);
// Delete a model.
const [operation] = await automlClient.deleteModel({name: modelFullId});
const [response] = await operation.promise();
const operationDetails = response[2];
// Get the Model delete details.
console.log('Model delete details:');
modelId = 'MODEL_ID'
) {
// [START automl_vision_object_detection_undeploy_model]
/**
* Demonstrates using the AutoML client to undeploy model.
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const modelId = '[MODEL_ID]' e.g., "TEN5200971474357190656";
//Imports the Google Cloud Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function undeployModel() {
// Get the full path of the model.
const modelFullId = automlClient.modelPath(
projectId,
computeRegion,
modelId
);
// Deploy a model with the deploy model request.
const [operation] = await automlClient.undeployModel({name: modelFullId});
const [response] = await operation.promise();
for (const element of response) {
console.log(`Undeployment Details:`);
console.log(`\tName: ${element.name}`);
console.log(`\tMetadata:`);
/**
* Demonstrates using the AutoML client to export a dataset to a
* Google Cloud Storage bucket.
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const datasetId = '[DATASET_ID]' e.g.,"IOD34216801856389120";
// const gcsOutputUri = '[GCS_OUTPUT_URI]' e.g., "gs:///",
// `Google Cloud Storage URI for the export directory`;
//Imports the Google Cloud Automl library
const {AutoMlClient} = require('@google-cloud/automl').v1beta1;
// Instantiates a client
const automlClient = new AutoMlClient();
async function exportData() {
// Get the full path of the dataset.
const datasetFullId = automlClient.datasetPath(
projectId,
computeRegion,
datasetId
);
// Set the output URI
const outputConfig = {
gcsDestination: {
outputUriPrefix: gcsOutputUri,
},
};
) {
// [START translate_text_with_model_beta]
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'global';
// const modelId = 'YOUR_MODEL_ID';
// Imports the Google Cloud Translation library
const {TranslationServiceClient} = require('@google-cloud/translate').v3beta1;
const automl = require('@google-cloud/automl');
// Instantiates a client
const translationClient = new TranslationServiceClient();
const autoMLClient = new automl.AutoMlClient();
async function translateTextWithModel() {
const model = autoMLClient.modelPath(projectId, location, modelId);
// Construct request
const request = {
parent: translationClient.locationPath(projectId, location),
contents: [text],
mimeType: 'text/plain', // mime types: text/plain, text/html
sourceLanguageCode: 'en-US',
targetLanguageCode: 'ja',
model: model,
};
// Run request
const [response] = await translationClient.translateText(request);
for (const translation of response.translations) {